Skip to content
2000
Volume 7, Issue 1
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

The ongoing global pandemic of COVID-19 has underscored the urgent need for effective treatment strategies to mitigate its impact on public health. Amidst this crisis, researchers have turned to synthetic drug approaches as potential therapeutic interventions. This review aims to comprehensively analyze the recent developments in synthetic drug treatments for COVID-19, exploring their mechanisms of action, efficacy, and challenges.

Objective

This review seeks to consolidate and evaluate the emerging synthetic drug approaches for COVID-19 treatment that have been investigated in recent studies. The objective is to present an up-to-date overview of the landscape of synthetic drug interventions and their potential implications in combating COVID-19.

Methods

A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science, utilizing keywords related to COVID-19 treatment and synthetic drugs. Studies published from May 2020 to July 2023 were included, focusing on experimental and clinical investigations of synthetic compounds with potential antiviral activity against SARS-CoV-2.

Results

The review highlights a range of synthetic drug approaches that have shown promise in COVID-19 treatment. Notably, certain antiviral agents and repurposed drugs have demonstrated inhibitory effects against viral replication and reduced disease severity. Additionally, the review underscores the significance of computational approaches in identifying potential drug candidates and optimizing their interactions with viral proteins. While several synthetic drug candidates are under investigation, challenges such as drug resistance, safety concerns, and global accessibility remain critical considerations.

Conclusion

This extensive review sheds light on the emerging synthetic drug approaches that hold potential for COVID-19 treatment. As the scientific community collaboratively addresses the challenges posed by this pandemic, the insights gleaned from these recent findings contribute to the ongoing efforts to identify effective therapeutic strategies against COVID-19.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975278587240817154042
2024-08-26
2026-01-03
Loading full text...

Full text loading...

References

  1. Gediz ErturkA. SahinA. Bati AyE. A multidisciplinary approach to coronavirus disease (COVID-19).Molecules20212612352610.3390/molecules2612352634207756
    [Google Scholar]
  2. HuB. GuoH. ZhouP. ShiZ.L. Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol.202119314115410.1038/s41579‑020‑00459‑733024307
    [Google Scholar]
  3. COVID-19 epidemiological update - 29 september 2023.2023Available from: https://www.who.int/publications/m/item/covid-19-epidemiological-update---29-september-2023#:~:text=The%20number%20of%20new%20deaths,deaths%20have%20been%20reported%20globally
  4. YuF. LauL.T. FokM. LauJ.Y.N. ZhangK. COVID-19 Delta variants—Current status and implications as of August 2021.Precis. Clin. Med.20214428729210.1093/pcmedi/pbab02435692860
    [Google Scholar]
  5. PapanikolaouV. ChrysovergisA. RagosV. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants.Gene202281414613410.1016/j.gene.2021.14613434990799
    [Google Scholar]
  6. TabatabaiM. JuarezP.D. Matthews-JuarezP. An analysis of covid-19 mortality during the dominancy of alpha, delta, and omicron in the USA.J. Prim. Care Community Health2023142150131923117016410.1177/2150131923117016437083205
    [Google Scholar]
  7. FarooqS. NgainiZ. Natural and synthetic drugs as potential treatment for coronavirus disease 2019 (COVID-2019).Chemistry Africa20214111310.1007/s42250‑020‑00203‑x
    [Google Scholar]
  8. BourhiaM. AmratiF.E.Z. UllahR. Coronavirus treatments: What drugs might work against COVID-19?Nat. Prod. Commun.202015710.1177/1934578X20945442
    [Google Scholar]
  9. AshrafI. AlnumayW.S. AliR. HurS. BashirA.K. ZikriaY.B. Prediction models for COVID-19 integrating age groups, gender, and underlying conditions.Comput. Mater. Continua20216733009304410.32604/cmc.2021.015140
    [Google Scholar]
  10. McKeeD.L. SternbergA. StangeU. LauferS. NaujokatC. Candidate drugs against SARS-CoV-2 and COVID-19.Pharmacol. Res.202015710485910.1016/j.phrs.2020.10485932360480
    [Google Scholar]
  11. CostanzoM. De GiglioM.A.R. RovielloG.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus.Curr. Med. Chem.202027274536454110.2174/1875533XMTA1tODYl132297571
    [Google Scholar]
  12. YousefiB. ValizadehS. GhaffariH. VahediA. KarbalaeiM. EslamiM. A global treatments for coronaviruses including COVID‐19.J. Cell. Physiol.2020235129133914210.1002/jcp.2978532394467
    [Google Scholar]
  13. AshrafM.U. KimY. KumarS. SeoD. AshrafM. BaeY.S. COVID-19 vaccines (revisited) and oral-mucosal vector system as a potential vaccine platform.Vaccine20219217110.3390/vaccines902017133670630
    [Google Scholar]
  14. JhaD.K. PranayK. KumarA. YashvardhiniN. The status of COVID-19 vaccines in India: A review.Vacunas2023243218247
    [Google Scholar]
  15. Alagheband BahramiA. AzargoonjahromiA. SadraeiS. AarabiA. PayandehZ. RajabibazlM. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19).Cell. Mol. Biol. Lett.20222713810.1186/s11658‑022‑00339‑335562685
    [Google Scholar]
  16. DuL. HeY. ZhouY. LiuS. ZhengB.J. JiangS. The spike protein of SARS-CoV — a target for vaccine and therapeutic development.Nat. Rev. Microbiol.20097322623610.1038/nrmicro209019198616
    [Google Scholar]
  17. WangQ. WongG. LuG. YanJ. GaoG.F. MERS-CoV spike protein: Targets for vaccines and therapeutics.Antiviral Res.201613316517710.1016/j.antiviral.2016.07.01527468951
    [Google Scholar]
  18. HeY. ZhouY. LiuS. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine.Biochem. Biophys. Res. Commun.2004324277378110.1016/j.bbrc.2004.09.10615474494
    [Google Scholar]
  19. ChannappanavarR. ZhaoJ. PerlmanS. T cell-mediated immune response to respiratory coronaviruses.Immunol. Res.2014591-311812810.1007/s12026‑014‑8534‑z24845462
    [Google Scholar]
  20. ChengV.C.C. LauS.K.P. WooP.C.Y. YuenK.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.Clin. Microbiol. Rev.200720466069410.1128/CMR.00023‑0717934078
    [Google Scholar]
  21. LiuJ. ZhengX. TongQ. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‐CoV, MERS‐CoV, and 2019‐nCoV.J. Med. Virol.202092549149410.1002/jmv.2570932056249
    [Google Scholar]
  22. LiX. ZaiJ. ZhaoQ. Evolutionary history, potential intermediate animal host, and cross‐species analyses of SARS‐CoV‐2.J. Med. Virol.202092660261110.1002/jmv.2573132104911
    [Google Scholar]
  23. LiW. MooreM.J. VasilievaN. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.Nature2003426696545045410.1038/nature0214514647384
    [Google Scholar]
  24. WrappD. WangN. CorbettK.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science202036764831260126310.1126/science.abb250732075877
    [Google Scholar]
  25. ZhouP. YangX.L. WangX.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature20205797798270273
    [Google Scholar]
  26. LuR. ZhaoX. LiJ. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑832007145
    [Google Scholar]
  27. PeirisJ.S.M. ChuC.M. ChengV.C.C. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study.Lancet200336193711767177210.1016/S0140‑6736(03)13412‑512781535
    [Google Scholar]
  28. de WitE. van DoremalenN. FalzaranoD. MunsterV.J. SARS and MERS: Recent insights into emerging coronaviruses.Nat. Rev. Microbiol.201614852353410.1038/nrmicro.2016.8127344959
    [Google Scholar]
  29. JeffersS.A. TusellS.M. Gillim-RossL. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus.Proc. Natl. Acad. Sci. USA200410144157481575310.1073/pnas.040381210115496474
    [Google Scholar]
  30. WuY.C. ChenC.S. ChanY.J. The outbreak of COVID-19: An overview.J. Chin. Med. Assoc.202083321722010.1097/JCMA.000000000000027032134861
    [Google Scholar]
  31. KuhnJ.H. LiW. ChoeH. FarzanM. What’s new in the renin-angiotensin system?Cell. Mol. Life Sci.200461212738274310.1007/s00018‑004‑4242‑515549175
    [Google Scholar]
  32. RajV.S. SmitsS.L. ProvaciaL.B. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus.J. Virol.20148831834183810.1128/JVI.02935‑1324257613
    [Google Scholar]
  33. SimmonsG. ReevesJ.D. RennekampA.J. AmbergS.M. PieferA.J. BatesP. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry.Proc. Natl. Acad. Sci. USA2004101124240424510.1073/pnas.030644610115010527
    [Google Scholar]
  34. MilletJ.K. WhittakerG.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein.Proc. Natl. Acad. Sci. USA201411142152141521910.1073/pnas.140708711125288733
    [Google Scholar]
  35. WangH. YangP. LiuK. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.Cell Res.200818229030110.1038/cr.2008.1518227861
    [Google Scholar]
  36. KubaK. ImaiY. Ohto-NakanishiT. PenningerJ.M. Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters.Pharmacol. Ther.2010128111912810.1016/j.pharmthera.2010.06.00320599443
    [Google Scholar]
  37. SiripanthongB. AsatryanB. HanffT.C. The pathogenesis and long-term consequences of COVID-19 cardiac injury.JACC Basic Transl. Sci.20227329430810.1016/j.jacbts.2021.10.01135165665
    [Google Scholar]
  38. a LiS. WangJ. YanY. ZhangZ. GongW. NieS. Clinical characterization and possible pathological mechanism of acute myocardial injury in COVID-19.Front. Cardiovasc. Med.20229862571
    [Google Scholar]
  39. b RusuI. TurlacuM. MicheuM.M. Acute myocardial injury in patients with COVID-19: Possible mechanisms and clinical implications.World J. Clin. Cases2022103762
    [Google Scholar]
  40. Silva-AguiarR.P. TeixeiraD.E. PeresR.A.S. Subclinical acute kidney injury in COVID-19: Possible mechanisms and future perspectives.Int. J. Mol. Sci.202223221419310.3390/ijms23221419336430671
    [Google Scholar]
  41. SharmaP. NgJ.H. BijolV. JhaveriK.D. WanchooR. Pathology of COVID-19-associated acute kidney injury.Clin. Kidney J.202114Suppl. 1i30i3910.1093/ckj/sfab00333796284
    [Google Scholar]
  42. BatlleD. SolerM.J. SparksM.A. Acute kidney injury in COVID-19: Emerging evidence of a distinct pathophysiology.J. Am. Soc. Nephrol.20203171380138310.1681/ASN.202004041932366514
    [Google Scholar]
  43. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.10592432081636
    [Google Scholar]
  44. AbrahamD.J. Structure-based drug design – a historical perspective and the future.Comprehensive Medicinal Chemistry II200646686
    [Google Scholar]
  45. ZumlaA. ChanJ.F.W. AzharE.I. HuiD.S.C. YuenK.Y. Coronaviruses — drug discovery and therapeutic options.Nat. Rev. Drug Discov.201615532734710.1038/nrd.2015.3726868298
    [Google Scholar]
  46. SohrabiC. AlsafiZ. O’NeillN. World health organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19).Int. J. Surg.202076717610.1016/j.ijsu.2020.02.03432112977
    [Google Scholar]
  47. FerraraF. ZoviA. TramaU. VitielloA. Nirmatrelvir–remdesivir association for non-hospitalized adults with COVID-19, point of view.Inflammopharmacology20223051927193110.1007/s10787‑022‑01055‑235980509
    [Google Scholar]
  48. GottliebR.L. VacaC.E. ParedesR. Early remdesivir to prevent progression to severe covid-19 in outpatients.N. Engl. J. Med.2022386430531510.1056/NEJMoa2116846
    [Google Scholar]
  49. AsakuraH. OgawaH. COVID-19-associated coagulopathy and disseminated intravascular coagulation.Int. J. Hematol.20211131455710.1007/s12185‑020‑03029‑y33161508
    [Google Scholar]
  50. RahiM.S. JindalV. ReyesS.P. GunasekaranK. GuptaR. JaiyesimiI. Hematologic disorders associated with COVID-19: A review.Ann. Hematol.2021100230932010.1007/s00277‑020‑04366‑y33415422
    [Google Scholar]
  51. TritschlerT. Le GalG. BrosnahanS. CarrierM. POINT: Should therapeutic heparin be administered to acutely ill hospitalized patients with COVID-19?Yes. Chest202216161446144810.1016/j.chest.2022.01.03635469670
    [Google Scholar]
  52. ConzelmannC. MüllerJ.A. PerkhoferL. Inhaled and systemic heparin as a repurposed direct antiviral drug for prevention and treatment of COVID-19.Clin. Med.2020206e218e22110.7861/clinmed.2020‑035132863274
    [Google Scholar]
  53. CassinelliG. NaggiA. Old and new applications of non-anticoagulant heparin.Int. J. Cardiol.2016212Suppl. 1S14S2110.1016/S0167‑5273(16)12004‑227264866
    [Google Scholar]
  54. KimS.Y. JinW. SoodA. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions.Antiviral Res.202018110487310.1016/j.antiviral.2020.10487332653452
    [Google Scholar]
  55. SaithongS. SaisornW. TovichayathamrongP. Anti-inflammatory effects and decreased formation of neutrophil extracellular traps by enoxaparin in COVID-19 patients.Int. J. Mol. Sci.2022239480510.3390/ijms2309480535563204
    [Google Scholar]
  56. SARS-CoV-2 variant classifications and definitions.Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/ variant-classifications.html#anchor_1632154493691 (accessed on 1 February 2023).
  57. HalfmannP.J. IidaS. Iwatsuki-HorimotoK. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters.Nature2022603790268769210.1038/s41586‑022‑04441‑635062015
    [Google Scholar]
  58. MasloC. FriedlandR. ToubkinM. LaubscherA. AkalooT. KamaB. Characteristics and outcomes of hospitalized patients in south africa during the COVID-19 omicron wave compared with previous waves.JAMA2022327658358410.1001/jama.2021.2486834967859
    [Google Scholar]
  59. GrobbelaarL.M. KrugerA. VenterC. Relative hypercoagulopathy of the SARS-CoV-2 beta and delta variants when compared to the less severe omicron variants is related to TEG parameters, the extent of fibrin amyloid microclots, and the severity of clinical illness.Semin. Thromb. Hemost.202248785886810.1055/s‑0042‑175630636174604
    [Google Scholar]
  60. TangN. BaiH. ChenX. GongJ. LiD. SunZ. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy.J. Thromb. Haemost.20201810941099
    [Google Scholar]
  61. Al-BariM.A.A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases.J. Antimicrob. Chemother.20157061608162110.1093/jac/dkv01825693996
    [Google Scholar]
  62. LemosA.C.B. do Espírito SantoD.A. SalvettiM.C. Therapeutic versus prophylactic anticoagulation for severe COVID-19: A randomized phase II clinical trial (HESACOVID).Thromb. Res.202019635936610.1016/j.thromres.2020.09.02632977137
    [Google Scholar]
  63. HartenianE. NandakumarD. LariA. LyM. TuckerJ.M. GlaunsingerB.A. The molecular virology of coronaviruses.J. Biol. Chem.202029537129101293410.1074/jbc.REV120.01393032661197
    [Google Scholar]
  64. NaqviAAT FatimaK MohammadT Insights into sars-cov- 2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach.Biochim Biophys Acta Mol Basis Dis20201866
    [Google Scholar]
  65. V’kovskiP. KratzelA. SteinerS. StalderH. ThielV. Coronavirus biology and replication: Implications for SARS-CoV-2.Nat. Rev. Microbiol.202119315517010.1038/s41579‑020‑00468‑633116300
    [Google Scholar]
  66. KuoL. MastersP.S. Functional analysis of the murine coronavirus genomic RNA packaging signal.J. Virol.20138795182519210.1128/JVI.00100‑1323449786
    [Google Scholar]
  67. ZhangJ. DongX. CaoY. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China.Allergy20207571730174110.1111/all.1423832077115
    [Google Scholar]
  68. JinY. YangH. JiW. Virology, epidemiology, pathogenesis, and control of COVID-19.Viruses202012437210.3390/v1204037232230900
    [Google Scholar]
  69. GeH. WangX. YuanX. The epidemiology and clinical information about COVID-19.Eur. J. Clin. Microbiol. Infect. Dis.20203961011101910.1007/s10096‑020‑03874‑z32291542
    [Google Scholar]
  70. CoperchiniF. ChiovatoL. CroceL. MagriF. RotondiM. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system.Cytokine Growth Factor Rev.202053253210.1016/j.cytogfr.2020.05.00332446778
    [Google Scholar]
  71. FajgenbaumD.C. JuneC.H. Cytokine storm.N. Engl. J. Med.2020383232255227310.1056/NEJMra202613133264547
    [Google Scholar]
  72. WangX. SacramentoC.Q. JockuschS. Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture.Commun. Biol.20225115410.1038/s42003‑022‑03101‑935194144
    [Google Scholar]
  73. EndoT. TakemaeH. SharmaI. FuruyaT. Multipurpose drugs active against both Plasmodium spp. and microorganisms: Potential application for new drug development.Front. Cell. Infect. Microbiol.20211179750910.3389/fcimb.2021.79750935004357
    [Google Scholar]
  74. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.16830310233
    [Google Scholar]
  75. ZengX. SongX. MaT. Repurpose open data to discover therapeutics for covid-19 using deep learning.J. Proteome Res.202019114624463610.1021/acs.jproteome.0c0031632654489
    [Google Scholar]
  76. D’AlessandroS. ScaccabarozziD. SignoriniL. The use of antimalarial drugs against viral infection.Microorganisms2020818510.3390/microorganisms801008531936284
    [Google Scholar]
  77. SelfW.H. SemlerM.W. LeitherL.M. Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with COVID-19.JAMA202032421216510.1001/jama.2020.2224033165621
    [Google Scholar]
  78. StaessenJ.A. WangJ. BianchiG. Birkenh¨agerW.H. Essential hypertension.Lancet2003361936916291641
    [Google Scholar]
  79. MillsK.T. BundyJ.D. KellyT.N. Global disparities of hypertension prevalence and control.Circulation2016134644145010.1161/CIRCULATIONAHA.115.01891227502908
    [Google Scholar]
  80. FryarC.D. OstchegaY. HalesC.M. ZhangG. Kruszon-MoranD. Hypertension prevalence and control among adults: United States, 2015–2016.NCHS Data Brief20172891829155682
    [Google Scholar]
  81. JacksonR.E. BellamyM.C. Antihypertensive drugs.BJA Educ.201515628028510.1093/bjaceaccp/mku061
    [Google Scholar]
  82. KhalilH. ZeltserR. Antihypertensive Medications.Treasure Island, FL, USAStatPearls Publishing2020
    [Google Scholar]
  83. RuscittiP. BerardicurtiO. Di BenedettoP. Severe COVID-19, another piece in the puzzle of the hyperferritinemic syndrome. An immunomodulatory perspective to alleviate the storm.Front. Immunol.202011113010.3389/fimmu.2020.0113032574264
    [Google Scholar]
  84. CarforaV. SpinielloG. RicciolinoR. Anticoagulant treatment in COVID-19: A narrative review.J. Thromb. Thrombolysis2020513642648
    [Google Scholar]
  85. FangL. KarakiulakisG. RothM. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?Lancet Respir. Med.202084e2110.1016/S2213‑2600(20)30116‑832171062
    [Google Scholar]
  86. MarinG.H. Facts and reflections on COVID-19 and antihypertensive drugs.Drug Discov. Ther.2020142105106
    [Google Scholar]
  87. BarreraF.J. ShekharS. WurthR. Prevalence of diabetes and hypertension and their associated risks for poor outcomes in covid-19 patients.J. Endocr. Soc.202049bvaa10210.1210/jendso/bvaa10232885126
    [Google Scholar]
  88. WheltonP.K. CareyR.M. AronowW.S. 2017 ACC/AHA/ AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American college of cardiology/American heart association task force on clinical practice guidelines.Hypertension2018716e13e11529133356
    [Google Scholar]
  89. HiremathS. RuzickaM. PetrcichW. Alpha-blocker use and the risk of hypotension and hypotension-related clinical events in women of advanced age.Hypertension201974364565110.1161/HYPERTENSIONAHA.119.1328931327266
    [Google Scholar]
  90. GibsonP.G. QinL. PuahS.H. COVID ‐19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre‐ COVID ‐19 ARDS.Med. J. Aust.202021325456.e110.5694/mja2.5067432572965
    [Google Scholar]
  91. GroupR.C. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial.Lancet2021397102851637164510.1016/S0140‑6736(21)00676‑033933206
    [Google Scholar]
  92. HorbyP. LimW.S. EmbersonJ.R. Dexamethasone in hospitalized patients with Covid-19.N. Engl. J. Med.2021384869370410.1056/NEJMoa202143632678530
    [Google Scholar]
  93. WardD. GortzS. ErnstM.T. The effect of immunosuppressants on the prognosis of SARS-CoV-2 infection.Eur. Respir. J.2022594210076910.1183/13993003.00769‑202134475227
    [Google Scholar]
  94. VelayosF.S. DusendangJ.R. SchmittdielJ.A. Prior immunosuppressive therapy and severe illness among patients diagnosed with SARS-CoV-2: A community-based study.J. Gen. Intern. Med.202136123794380110.1007/s11606‑021‑07152‑234581984
    [Google Scholar]
  95. GianfrancescoM. HyrichK.L. Al-AdelyS. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry.Ann. Rheum. Dis.202079785986610.1136/annrheumdis‑2020‑21787132471903
    [Google Scholar]
  96. BaangJ.H. SmithC. MirabelliC. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient.J. Infect. Dis.20212231232710.1093/infdis/jiaa66633089317
    [Google Scholar]
  97. ChoiB. ChoudharyM.C. ReganJ. Persistence and evolution of sars-cov-2 in an immunocompromised host.N. Engl. J. Med.2020383232291229310.1056/NEJMc203136433176080
    [Google Scholar]
  98. HarpazR. DahlR.M. DoolingK.L. Prevalence of immunosuppression among us adults, 2013.JAMA2016316232547254810.1001/jama.2016.1647727792809
    [Google Scholar]
  99. MooreJ.B. JuneC.H. Cytokine release syndrome in severe COVID-19.Science2020368649047347410.1126/science.abb892532303591
    [Google Scholar]
  100. Del ValleD.M. Kim-SchulzeS. HuangH.H. An inflammatory cytokine signature predicts COVID-19 severity and survival.Nat. Med.202026101636164310.1038/s41591‑020‑1051‑932839624
    [Google Scholar]
  101. Moreno-TorresV. de MendozaC. de la FuenteS. Bacterial infections in patients hospitalized with COVID-19.Intern. Emerg. Med.202217243143810.1007/s11739‑021‑02824‑734406633
    [Google Scholar]
  102. RawsonT.M. MooreL.S.P. ZhuN. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing.Clin. Infect. Dis.2020719ciaa53010.1093/cid/ciaa53032358954
    [Google Scholar]
  103. SugdenR. KellyR. DaviesS. Combatting antimicrobial resistance globally.Nat. Microbiol.20161101618710.1038/nmicrobiol.2016.18727670123
    [Google Scholar]
  104. Garcia-VidalC. SanjuanG. Moreno-GarcíaE. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study.Clin. Microbiol. Infect.2021271838810.1016/j.cmi.2020.07.04132745596
    [Google Scholar]
  105. KaramiZ. KnoopB.T. DofferhoffA.S.M. Few bacterial co-infections but frequent empiric antibiotic use in the early phase of hospitalized patients with COVID-19: Results from a multicentre retrospective cohort study in The Netherlands.Infect Dis202153210211010.1080/23744235.2020.183967233103530
    [Google Scholar]
  106. BassettiM. GiacobbeD.R. BruzziP. Clinical management of adult patients with COVID-19 outside intensive care units: Guidelines from the Italian society of anti-infective therapy (SITA) and the Italian Society of Pulmonology (SIP).Infect. Dis. Ther.20211041837188510.1007/s40121‑021‑00487‑734328629
    [Google Scholar]
  107. Moreno-GarcíaE. Puerta-AlcaldeP. LetonaL. Bacterial co-infection at hospital admission in patients with COVID-19.Int. J. Infect. Dis.202211819720210.1016/j.ijid.2022.03.00335257905
    [Google Scholar]
  108. De PascaleG. De MaioF. CarelliS. Staphylococcus aureus ventilator-associated pneumonia in patients with COVID-19: Clinical features and potential inference with lung dysbiosis.Crit. Care202125119710.1186/s13054‑021‑03623‑434099016
    [Google Scholar]
  109. GhlichlooI. GerrietsV. Nonsteroidal anti-inflammatory drugs (NSAIDs).StatPearls.Treasure Island, FLStatPearls Publishing2021
    [Google Scholar]
  110. MooreN. Bosco-LevyP. ThurinN. BlinP. Droz-PerroteauC. NSAIDs and COVID-19: A systematic review and meta-analysis.Drug Saf.202144992993810.1007/s40264‑021‑01089‑534339037
    [Google Scholar]
  111. VosuJ. BrittonP. Howard-JonesA. Is the risk of ibuprofen or other non‐steroidal anti‐inflammatory drugs increased in COVID ‐19?J. Paediatr. Child Health202056101645164610.1111/jpc.1515932862506
    [Google Scholar]
  112. LandewéR.B.M. MachadoP.M. KroonF. EULAR provisional recommendations for the management of rheumatic and musculoskeletal diseases in the context of SARS-CoV-2.Ann. Rheum. Dis.202079785185810.1136/annrheumdis‑2020‑21787732503854
    [Google Scholar]
  113. KakodkarP. KakaN. BaigM.N. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19).Cureus2020124e756010.7759/cureus.756032269893
    [Google Scholar]
  114. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  115. HeL. DingY. ZhangQ. Expression of elevated levels of pro‐inflammatory cytokines in SARS‐CoV‐infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS.J. Pathol.20062103288297
    [Google Scholar]
  116. FalzaranoD. de WitE. RasmussenA.L. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques.Nat. Med.201319101313131710.1038/nm.336224013700
    [Google Scholar]
  117. ArabiY.M. MandourahY. Al-HameedF. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome.Am. J. Respir. Crit. Care Med.2018197675776710.1164/rccm.201706‑1172OC29161116
    [Google Scholar]
  118. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7).Chin. Med. J.202013391087109510.1097/CM9.000000000000081932358325
    [Google Scholar]
  119. FaustS. HorbyP. LimW.S. Effect of dexamethasone in hospitalized patients with COVID-19: Preliminary report.MedRxiv2020
    [Google Scholar]
  120. LedfordH. Coronavirus breakthrough: Dexamethasone is first drug shown to save lives.Nature2020582781346947010.1038/d41586‑020‑01824‑532546811
    [Google Scholar]
  121. WHO Director-General’s opening remarks at the media briefing on COVID.2020Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-re (Accessed: 24 June 2023).
  122. YokotaS. MiyamaeT. ImagawaT. Therapeutic efficacy of humanized recombinant anti–interleukin‐6 receptor antibody in children with systemic‐onset juvenile idiopathic arthritis.Arthritis Rheum.200552381882510.1002/art.2094415751095
    [Google Scholar]
  123. LeR.Q. LiL. YuanW. FDA approval summary: Tocilizumab for treatment of chimeric antigen receptor T cell‐induced severe or life‐threatening cytokine release syndrome.Oncologist201823894394710.1634/theoncologist.2018‑002829622697
    [Google Scholar]
  124. NavarroG. TaroumianS. BarrosoN. DuanL. FurstD. Tocilizumab in rheumatoid arthritis: A meta-analysis of efficacy and selected clinical conundrums.Semin. Arthritis Rheum.201443445846910.1016/j.semarthrit.2013.08.001
    [Google Scholar]
  125. NishimotoN. KanakuraY. AozasaK. Humanized anti–interleukin-6 receptor antibody treatment of multicentric Castleman disease.Blood200510682627263210.1182/blood‑2004‑12‑460215998837
    [Google Scholar]
  126. LiY. ChenM. CaoH. ZhuY. ZhengJ. ZhouH. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response.Microbes Infect.2013152889510.1016/j.micinf.2012.10.00823123977
    [Google Scholar]
  127. ZhouY. FuB. ZhengX. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+ CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus.biorxiv20202020-0210.1101/2020.02.12.945576
    [Google Scholar]
  128. LeviM. Tocilizumab in severe COVID-19: A promise fulfilled.Eur. J. Intern. Med.202295383910.1016/j.ejim.2021.11.01534836747
    [Google Scholar]
  129. Representational structure of Tocilizumab.Available from: https://go.drugbank.com/drugs/DB06273 [Accessed on 25 June 2023].
  130. ShenC. WangZ. ZhaoF. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma.JAMA2020323161582158910.1001/jama.2020.478332219428
    [Google Scholar]
  131. ChenL. XiongJ. BaoL. ShiY. Convalescent plasma as a potential therapy for COVID-19.Lancet Infect. Dis.202020439840010.1016/S1473‑3099(20)30141‑932113510
    [Google Scholar]
  132. FocosiD. FranchiniM. PirofskiL. COVID-19 convalescent plasma and clinical trials: Understanding conflicting outcomes.Clin. Microbiol. Rev.2022353e00200e0022110.1128/cmr.00200‑2135262370
    [Google Scholar]
  133. KamenD.L. NietertP.J. WangH. CT-04 Safety and efficacy of allogeneic umbilical cord-derived mesenchymal stem cells (MSCs) in patients with systemic lupus erythematosus: Results of an open-label phase I study.Arch. Dis. Child.2018701013
    [Google Scholar]
  134. XuR. FengZ. WangF.S. Mesenchymal stem cell treatment for COVID-19.EBioMedicine20227710392010.1016/j.ebiom.2022.10392035279630
    [Google Scholar]
  135. StockmanL.J. BellamyR. GarnerP. SARS: Systematic review of treatment effects.PLoS Med.200639e34310.1371/journal.pmed.003034316968120
    [Google Scholar]
  136. SodeifianF. NikfarjamM. KianN. MohamedK. RezaeiN. The role of type I interferon in the treatment of COVID‐19.J. Med. Virol.2022941638110.1002/jmv.2731734468995
    [Google Scholar]
  137. Coronavirus disease (COVID-19): Vaccines and vaccine safety.Available from: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-vaccines [accessed on 25th Nov, 2023]
  138. ChouK.C. WeiD.Q. ZhongW.Z. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS.Biochem. Biophys. Res. Commun.2003308114815110.1016/s0006‑291x(03)01342‑112890493
    [Google Scholar]
  139. HoW. Guideline on management of severe acute respiratory syndrome (SARS).Lancet200336193661313131510.1016/S0140‑6736(03)13085‑112711461
    [Google Scholar]
  140. XuX. LiuY. WeissS. ArnoldE. SarafianosS.G. DingJ. Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design.Nucleic Acids Res.200331247117713010.1093/nar/gkg91614654687
    [Google Scholar]
  141. FouchierR.A. HartwigN.G. BestebroerT.M. A previously undescribed coronavirus associated with respiratory disease in humans.Proc. Natl. Acad. Sci. USA20041016212621610.1073/pnas.0400762101
    [Google Scholar]
  142. AhmadM.Z. AhmadJ. AslamM. KhanM.A. AlasmaryM.Y. Abdel-WahabB.A. Repurposed drug against COVID-19: Nanomedicine as an approach for finding new hope in old medicines.Nano Express20212202200710.1088/2632‑959X/abffed
    [Google Scholar]
  143. RaiM. BondeS. YadavA. Nanotechnology-based promising strategies for the management of COVID-19: Current development and constraints.Expert Rev. Anti Infect. Ther.202220101299130810.1080/14787210.2021.183696133164589
    [Google Scholar]
  144. SahooP. DeyJ. MahapatraS.R. Nanotechnology and COVID-19 convergence: Toward new planetary health interventions against the pandemic.OMICS202226947348810.1089/omi.2022.007236040392
    [Google Scholar]
  145. RaiM. BondeS. YadavA. Nanotechnology as a shield against COVID-19: Current advancement and limitations.Viruses2021137122410.3390/v1307122434202815
    [Google Scholar]
  146. VahedifardF. ChakravarthyK. Nanomedicine for COVID-19: The role of nanotechnology in the treatment and diagnosis of COVID-19.Emergent Mater.2021417599
    [Google Scholar]
  147. PeplowM. Nanotechnology offers alternative ways to fight COVID-19 pandemic with antivirals.Nat. Biotechnol.202139101172117410.1038/s41587‑021‑01085‑134621072
    [Google Scholar]
  148. AyanS. Aranci-CiftciK. CiftciF. UstundagC.B. Nanotechnology and COVID-19: Prevention, diagnosis, vaccine, and treatment strategies.Front. Mater.20239105918410.3389/fmats.2022.1059184
    [Google Scholar]
  149. ChakravartyM. VoraA. Nanotechnology-based antiviral therapeutics.Drug Deliv. Transl. Res.202111374878710.1007/s13346‑020‑00818‑032748035
    [Google Scholar]
  150. XuC. LeiC. HosseinpourS. IvanovskiS. WalshL.J. KhademhosseiniA. Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era.Natl. Sci. Rev.2022910nwac12410.1093/nsr/nwac12436196115
    [Google Scholar]
  151. TavakolS. ZahmatkeshanM. MohammadinejadR. The role of nanotechnology in current COVID-19 outbreak.Heliyon202174e0684110.1016/j.heliyon.2021.e0684133880422
    [Google Scholar]
/content/journals/covid/10.2174/0126667975278587240817154042
Loading
/content/journals/covid/10.2174/0126667975278587240817154042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test