Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Background/Introduction

A paradigm shift is brought about by the combination of medicines with cutting-edge medical technology, which improves patient outcomes, effectiveness, and accuracy. The review dives into applications such as anti-aging therapy, nanotechnology, and acne treatment while also examining obstacles, traditional procedures, and current breakthroughs. It highlights the difficulties with patient adherence, safety, and regulatory barriers while projecting a future where genetics, biosensors, and artificial intelligence will power tailored therapies. Emphasis is placed on the potential for global dermatological health, imagining a time when drug-device combos would alter skincare globally.

Objectives

This study aims to provide a comprehensive overview of the current landscape of drug-device combinations in dermatology and advancement in drug-device combinations for dermatological therapy.

Methods

A literature search was performed on PubMed and Google Scholar using the following key terms” Dermatology,” “Cosmetic technologies,” “Dermatopharmacology,” “Beauty Perception,” and “Skincare.”

Results and Discussion

The assessment of the safety and effectiveness profiles of various drug-device combinations, considering long-term effects, adverse events, patient satisfaction, and clinical results. This includes an examination of the fundamental processes by which pharmaceuticals and cutting-edge cosmetic technologies work together to produce therapeutic outcomes like improved drug delivery, targeted therapy, and synergistic effects.

Conclusion

In conclusion, drug-device combinations offer a viable way to improve therapeutic outcomes and elevate patient care in dermatology by fusing pharmaceuticals with cutting-edge cosmetic technology. Our analysis focuses on the wide range of combinations that are currently available, as well as their effectiveness, safety profiles, and underlying mechanisms of action. Even though there has been a lot of development, issues, including patient variability, technical constraints, and regulatory barriers, still exist.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797340276241219105142
2024-12-27
2025-09-14
Loading full text...

Full text loading...

References

  1. DonalisioM. LeoneF. CivraA. SpagnoloR. OzerO. LemboD. CavalliR. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections.Pharmaceutics20181024610.3390/pharmaceutics10020046 29642603
    [Google Scholar]
  2. ChoiS.H. WangY. ContiD.S. RaneyS.G. DelvadiaR. LeboeufA.A. WitzmannK. Generic drug device combination products: Regulatory and scientific considerations.Int. J. Pharm.2018544244345410.1016/j.ijpharm.2017.11.038 29170118
    [Google Scholar]
  3. CohenM. AustinE. MasubN. KurttiA. GeorgeC. JagdeoJ. Home-based devices in dermatology: A systematic review of safety and efficacy.Arch. Dermatol. Res.2022314323924610.1007/s00403‑021‑02231‑0 33938981
    [Google Scholar]
  4. MavranezouliI. DalyC.H. WeltonN.J. DeshpandeS. BergL. BromhamN. ArnoldS. PhillippoD.M. WilcockJ. XuJ. RavenscroftJ.C. WoodD. RafiqM. FouL. DworzynskiK. HealyE. A systematic review and network meta-analysis of topical pharmacological, oral pharmacological, physical and combined treatments for acne vulgaris.Br. J. Dermatol.2022187563964910.1111/bjd.21739 35789996
    [Google Scholar]
  5. LoA. LovellK.K. GreenzaidJ.D. OscherwitzM.E. FeldmanS.R. Adherence to treatment in dermatology: Literature review.JEADV Clin. Pract.20243240141810.1002/jvc2.379
    [Google Scholar]
  6. LabadieJ.G. IbrahimS.A. WorleyB. KangB.Y. RakitaU. RigaliS. ArndtK.A. BernsteinE. BrauerJ.A. ChandraS. DidwaniaA. DiGiorgioC. DonelanM. DoverJ.S. GaladariH. GeronemusR.G. GoldmanM.P. HaedersdalM. HruzaG. IbrahimiO.A. KauvarA. KellyK.M. KrakowskiA.C. MiestR. OrringerJ.S. OzogD.M. RossE.V. ShumakerP.R. SobankoJ.F. SuozziK. TaylorM.B. TengJ.M.C. UebelhoerN.S. WaibelJ. WannerM. RatchevI. ChristensenR.E. PoonE. MillerC.H. AlamM. Evidence-based clinical practice guidelines for laser-assisted drug delivery.JAMA Dermatol.2022158101193120110.1001/jamadermatol.2022.3234 35976634
    [Google Scholar]
  7. AlkilaniA.Z. NasereddinJ. HamedR. NimrawiS. HusseinG. Abo-ZourH. DonnellyR.F. Beneath the skin: A review of current trends and future prospects of transdermal drug delivery systems.Pharmaceutics2022146115210.3390/pharmaceutics14061152 35745725
    [Google Scholar]
  8. GorzelannyC. MessC. SchneiderS.W. HuckV. BrandnerJ.M. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them?Pharmaceutics202012768410.3390/pharmaceutics12070684 32698388
    [Google Scholar]
  9. YangD. ChenM. SunY. JinY. LuC. PanX. QuanG. WuC. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases.Acta Biomater.202112111913310.1016/j.actbio.2020.12.004 33285323
    [Google Scholar]
  10. ParhiR. MandruA. Enhancement of skin permeability with thermal ablation techniques: Concept to commercial products.Drug Deliv. Transl. Res.202111381784110.1007/s13346‑020‑00823‑3 32696221
    [Google Scholar]
  11. AkhtarN. SinghV. YusufM. KhanR.A. Non-invasive drug delivery technology: Development and current status of transdermal drug delivery devices, techniques and biomedical applications.Biomed. Eng. (N.Y.)202065324327210.1515/bmt‑2019‑0019
    [Google Scholar]
  12. KarA. AhamadN. DewaniM. AwasthiL. PatilR. BanerjeeR. Wearable and implantable devices for drug delivery: Applications and challenges.Biomaterials202228312143510.1016/j.biomaterials.2022.121435 35227964
    [Google Scholar]
  13. YuY.Q. YangX. WuX.F. FanY.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications.Front. Bioeng. Biotechnol.2021964655410.3389/fbioe.2021.646554 33855015
    [Google Scholar]
  14. Van GheluweL. ChourpaI. GaigneC. MunnierE. Polymer-based smart drug delivery systems for skin application and demonstration of stimuli-responsiveness.Polymers (Basel)2021138128510.3390/polym13081285 33920816
    [Google Scholar]
  15. BakshiP. VoraD. HemmadyK. BangaA.K. Iontophoretic skin delivery systems: Success and failures.Int. J. Pharm.202058611958410.1016/j.ijpharm.2020.119584 32603836
    [Google Scholar]
  16. KováčikA. KopečnáM. VávrováK. Permeation enhancers in transdermal drug delivery: Benefits and limitations.Expert Opin. Drug Deliv.202017214515510.1080/17425247.2020.1713087 31910342
    [Google Scholar]
  17. MatterM. ProbstS. LäuchliS. HerrmannI. Uniting drug and delivery: Metal oxide hybrid nanotherapeutics for skin wound care.Pharmaceutics202012878010.3390/pharmaceutics12080780 32824470
    [Google Scholar]
  18. YangH. FierroF. SoM. YoonD.J. NguyenA.V. GallegosA. BagoodM.D. Rojo-CastroT. AlexA. StewartH. ChigbrowM. DasuM.R. PeavyT.R. SoulikaA.M. NoltaJ.A. IsseroffR.R. Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice.Stem Cells Transl. Med.20209111353136410.1002/sctm.19‑0380 32720751
    [Google Scholar]
  19. Pleguezuelos-BeltránP. Gálvez-MartínP. Nieto-GarcíaD. MarchalJ.A. López-RuizE. Advances in spray products for skin regeneration.Bioact. Mater.20221618720310.1016/j.bioactmat.2022.02.023 35386328
    [Google Scholar]
  20. GuillotA.J. Martínez-NavarreteM. GarriguesT.M. MeleroA. Skin drug delivery using lipid vesicles: A starting guideline for their development.J. Control. Release202335562465410.1016/j.jconrel.2023.02.006 36775245
    [Google Scholar]
  21. RamadonD. McCruddenM.T.C. CourtenayA.J. DonnellyR.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications.Drug Deliv. Transl. Res.202212475879110.1007/s13346‑021‑00909‑6 33474709
    [Google Scholar]
  22. QuF. GengR. LiuY. ZhuJ. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment.Theranostics20221273372340610.7150/thno.69999 35547773
    [Google Scholar]
  23. ManikkathJ. SubramonyJ.A. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems.Adv. Drug Deliv. Rev.202117911399710.1016/j.addr.2021.113997 34634396
    [Google Scholar]
  24. ResearchI. ResearchI. Global dermatology devices market forecast.Available from2023https://www.inkwoodresearch.com/reports/dermatology-devices-market/
    [Google Scholar]
  25. NastitiC. PontoT. AbdE. GriceJ. BensonH. RobertsM. Topical nano and microemulsions for skin delivery.Pharmaceutics2017943710.3390/pharmaceutics9040037 28934172
    [Google Scholar]
  26. PandeyP.C. ShuklaS. SkoogS.A. BoehmR.D. NarayanR.J. Current advancements in transdermal biosensing and targeted drug delivery.Sensors (Basel)2019195102810.3390/s19051028 30823435
    [Google Scholar]
  27. MassellaD. ArgenzianoM. FerriA. GuanJ. GiraudS. CavalliR. BarresiA.A. SalaünF. Bio-functional textiles: Combining pharmaceutical nanocarriers with fibrous materials for innovative dermatological therapies.Pharmaceutics201911840310.3390/pharmaceutics11080403 31405229
    [Google Scholar]
  28. NagulaR.L. WairkarS. Recent advances in topical delivery of flavonoids: A review.J. Control. Release2019296January19020110.1016/j.jconrel.2019.01.029 30682442
    [Google Scholar]
  29. NathP.A. NivruttiP. R Drug Penetration Enhancement Techniques in Transdermal Drug Delivery System: A Review.J. Pharm. Res. Int.20213319
    [Google Scholar]
  30. SabriA.H. OgilvieJ. AbdulhamidK. ShpadarukV. McKennaJ. SegalJ. ScurrD.J. MarlowM. Expanding the applications of microneedles in dermatology.Eur. J. Pharm. Biopharm.2019140April12114010.1016/j.ejpb.2019.05.001 31059780
    [Google Scholar]
  31. AlkilaniA. McCruddenM.T. DonnellyR. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum.Pharmaceutics20157443847010.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  32. BudhathokiU. GartoullaK. ShakyaS. Formulation and evaluation of transdermal patches of atenolol.Indones. J. Pharm.201627419620210.14499/indonesianjpharm27iss4pp196
    [Google Scholar]
  33. BaldwinD. GoldS. Study results in focus: Assessing the clinical efficacy of Epiduo.Available from2017
    [Google Scholar]
  34. TanM. XuY. GaoZ. YuanT. LiuQ. YangR. ZhangB. PengL. Recent advances in intelligent wearable medical devices integrating biosensing and drug delivery.Adv. Mater.20223427210849110.1002/adma.202108491 35008128
    [Google Scholar]
  35. Expanding personalized, data-driven dermatology: leveraging digital health technology and machine learning to improve patient outcomes.JID Innov.202223
    [Google Scholar]
  36. https://www.bbilaser.com/ipl-machine/bbi-k2-ipl-dpl-beauty-mchine-for-skin.html
  37. SchallerM. DirschkaT. Lonne-RahmS.B. MicaliG. Stein GoldL.F. TanJ. Del RossoJ. The importance of assessing burning and stinging when managing Rosacea: A review.Acta Derm. Venereol.202110110adv0058410.2340/actadv.v101.356 34643244
    [Google Scholar]
  38. GastaminzaG. AzofraJ. Nunez-CordobaJ.M. BaezaM.L. EchechipíaS. GaigP. GarcíaB.E. Labrador-HorrilloM. Sala-CunillA. BrescóM.S. BeristainA. QuiñonesD. DonadoC.D. ZubeldiaJ.M. FerrerM. Efficacy and safety of Omalizumab (Xolair) for cholinergic urticaria in patients unresponsive to a double dose of antihistamines: A randomized mixed double-blind and open-label placebo-controlled clinical trial.J. Allergy Clin. Immunol. Pract.20197515991609.e110.1016/j.jaip.2018.12.025 30654196
    [Google Scholar]
  39. OverchukM. WeersinkR.A. WilsonB.C. ZhengG. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine.ACS Nano20231797979800310.1021/acsnano.3c00891 37129253
    [Google Scholar]
  40. PotaśJ. SzymańskaE. WinnickaK. Challenges in developing of chitosan – Based polyelectrolyte complexes as a platform for mucosal and skin drug delivery.Eur. Polym. J.202014011002010.1016/j.eurpolymj.2020.110020
    [Google Scholar]
  41. RăileanuM. BorlanR. CampuA. JanosiL. TurcuI. FocsanM. BacalumM. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection.Int. J. Pharm.202364212316910.1016/j.ijpharm.2023.123169 37356506
    [Google Scholar]
  42. TianJ. SongX. WangY. ChengM. LuS. XuW. GaoG. SunL. TangZ. WangM. ZhangX. Regulatory perspectives of combination products.Bioact. Mater.20221049250310.1016/j.bioactmat.2021.09.002 34901562
    [Google Scholar]
  43. FerrarisC. RimicciC. GarelliS. UgazioE. BattagliaL. Nanosystems in cosmetic products: A brief overview of functional, market, regulatory and safety concerns.Pharmaceutics2021139140810.3390/pharmaceutics13091408 34575484
    [Google Scholar]
  44. LeeJ.S. KimJ. CuiB. KimS.K. ChoS.A. AnS. ChoS.W. Hybrid skin chips for toxicological evaluation of chemical drugs and cosmetic compounds.Lab Chip202222234335310.1039/D1LC00550B 34904990
    [Google Scholar]
  45. ReisM.E. BettencourtA. RibeiroH.M. The regulatory challenges of innovative customized combination products.Front. Med. (Lausanne)2022982109410.3389/fmed.2022.821094 35935795
    [Google Scholar]
  46. DsouzaL. GhateV.M. LewisS.A. Derma rollers in therapy: The transition from cosmetics to transdermal drug delivery.Biomed. Microdevices20202247710.1007/s10544‑020‑00530‑3 33104926
    [Google Scholar]
  47. CarlomagnoF. RovedaG. MichelottiA. RuggeriF. TursiF. Anti-Skin-Aging effect of a treatment with a cosmetic product and a food supplement based on a new hyaluronan: A randomized clinical study in healthy women.Cosmetics2022935410.3390/cosmetics9030054
    [Google Scholar]
  48. SuZ. LuoF. PeiX. ZhangF. XingS. WangG. Final citation of the “Regulations on the supervision and administration of cosmetics” and new prospectives of cosmetic science in China.Cosmetics2020749810.3390/cosmetics7040098
    [Google Scholar]
  49. KumarP. MahorA. ChaudharyV. SharmaS. Nanotechnology: Current Developments, applications and patents for non-invasive topical cosmetics and dermatological therapeutic delivery.Drug Deliv. Lett.202414317919710.2174/0122103031285090240418091630
    [Google Scholar]
  50. DeGrazioF. PaskietD. Injectable combination product development: Facilitating Risk-based assessments for efficiency and patient centric outcomes.J. Pharm. Sci.202010972101211510.1016/j.xphs.2020.03.020 32272133
    [Google Scholar]
  51. ParkK.Y. López GehrkeI. Combined multilevel ANTI‐AGING strategies and practical applications of dermocosmetics in aesthetic procedures.J. Eur. Acad. Dermatol. Venereol.202438S4Suppl. 4233510.1111/jdv.19975 38881448
    [Google Scholar]
  52. CassutoD. BelliaG. SchiraldiC. An overview of soft tissue fillers for cosmetic dermatology: From filling to regenerative medicine.Clin. Cosmet. Investig. Dermatol.2021141857186610.2147/CCID.S276676 34992400
    [Google Scholar]
  53. ZargaranD. ZollerF.E. ZargaranA. MosahebiA. Complications of facial cosmetic botulinum toxin A injection: analysis of the UK Medicines & Healthcare Products Regulatory Agency registry and literature review.J. Plast. Reconstr. Aesthet. Surg.202275139240110.1016/j.bjps.2021.05.074 34456155
    [Google Scholar]
  54. CalvoF. GómezJ.M. Ricardez-SandovalL. AlvarezO. Integrated design of emulsified cosmetic products: A review.Chem. Eng. Res. Des.202016127930310.1016/j.cherd.2020.07.014
    [Google Scholar]
  55. SalagerJ.L. AntónR. BullónJ. ForgiariniA. MarquezR. How to use the normalized hydrophilic-lipophilic deviation (HLDN) concept for the formulation of equilibrated and emulsified surfactant-oil-water systems for cosmetics and pharmaceutical products.Cosmetics2020735710.3390/cosmetics7030057
    [Google Scholar]
  56. Microneedles: A new way to deliver vaccines.J. Pharm. (Cairo)2023
    [Google Scholar]
  57. BartheM. BavouxC. FinotF. MoucheI. Cuceu-PetrenciC. ForrerydA. Chérouvrier HanssonA. JohanssonH. LemkineG.F. ThénotJ.P. Osman-PonchetH. Safety testing of cosmetic products: Overview of established methods and new approach methodologies (NAMs).Cosmetics2021825010.3390/cosmetics8020050
    [Google Scholar]
  58. Al-NimryS. DayahA.A. HasanI. DaghmashR. Cosmetic, biomedical and pharmaceutical applications of fish gelatin/hydrolysates.Mar. Drugs202119314510.3390/md19030145 33800149
    [Google Scholar]
  59. 2022https://www.modmed.com/resources/blog/st-petersburg-dermatology-experiences-operational-benefits-by-using-the-modmed-dermatology-suite
  60. KhesinaZ.B. IartsevS.D. RevelskyA.I. BuryakA.K. Microextraction by packed sorbent optimized by statistical design of experiment as an approach to increase the sensitivity and selectivity of HPLC-UV determination of parabens in cosmetics.J. Pharm. Biomed. Anal.202119511384310.1016/j.jpba.2020.113843 33358620
    [Google Scholar]
  61. BanerjeeP. UlkerO.C. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products.Toxicol. Mech. Methods202232754254810.1080/15376516.2022.2053623 35287538
    [Google Scholar]
  62. DiniI. LaneriS. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations.Molecules20212613392110.3390/molecules26133921 34206931
    [Google Scholar]
  63. SahaT. HoqueM.E. MahbubT. Biopolymers for sustainable packaging in food, cosmetics, and pharmaceuticals.Elsevier202019721410.1016/B978‑0‑12‑819661‑8.00013‑5
    [Google Scholar]
  64. DasB. KumarB. BegumW. BhattaraiA. MondalM.H. SahaB. Comprehensive review on applications of surfactants in vaccine formulation, therapeutic and cosmetic pharmacy and prevention of pulmonary failure due to COVID-19.Chem. Africa20225345948010.1007/s42250‑022‑00345‑0
    [Google Scholar]
  65. AhmadA. AhsanH. Lipid-based formulations in cosmeceuticals and biopharmaceuticals.Biomed. Dermatol.2020411210.1186/s41702‑020‑00062‑9
    [Google Scholar]
  66. SotiropoulouG. ZingkouE. PampalakisG. Redirecting drug repositioning to discover innovative cosmeceuticals.Exp. Dermatol.202130562864410.1111/exd.14299 33544970
    [Google Scholar]
  67. BilalM. MehmoodS. IqbalH.M.N. The beast of beauty: Environmental and health concerns of toxic components in cosmetics.Cosmetics2020711310.3390/cosmetics7010013
    [Google Scholar]
  68. AlhassoB. GhoriM.U. ConwayB.R. Systematic review on the effectiveness of essential and carrier oils as skin penetration enhancers in pharmaceutical formulations.Sci. Pharm.20229011410.3390/scipharm90010014
    [Google Scholar]
  69. ChenJ. RenH. ZhouP. ZhengS. DuB. LiuX. XiaoF. Microneedle-mediated drug delivery for cutaneous diseases.Front. Bioeng. Biotechnol.202210103204110.3389/fbioe.2022.1032041 36324904
    [Google Scholar]
  70. BarryB.W. Novel mechanisms and devices to enable successful transdermal drug delivery.Eur. J. Pharm. Sci.200114210111410.1016/S0928‑0987(01)00167‑1 11500256
    [Google Scholar]
  71. GiddeN.D. KarandeK.A. JadhavS.S. MistryR.S. MhetreA. JoshiS.D. Microsponge.An Overview.20212311671682
    [Google Scholar]
  72. VitthalP. AnuradhaS. 2020
  73. TiwariA. TiwariV. PalariaB. KumarM. KaushikD. Microsponges: A breakthrough tool in pharmaceutical research.Future J. Pharm. Sci.2022813110.1186/s43094‑022‑00421‑9
    [Google Scholar]
  74. GusaiT. DhavalkumarM. SoniwalaM. DudhatK. VasoyaJ. ChavdaJ. Formulation and optimization of microsponge-loaded emulgel to improve the transdermal application of acyclovir—a DOE based approach.Drug Deliv. Transl. Res.20211152009202910.1007/s13346‑020‑00862‑w 33159290
    [Google Scholar]
  75. BoenM. BrownellJ. PatelP. TsoukasM.M. The role of photodynamic therapy in acne: An evidence-based review.Am. J. Clin. Dermatol.201718331132110.1007/s40257‑017‑0255‑3 28276005
    [Google Scholar]
  76. KeményL. SzabóK. Innate and adaptive immunity in acne vulgaris Acne.2021
    [Google Scholar]
  77. HalderJ. GuptaS. KumariR. GuptaG.D. RaiV.K. Microneedle array: Applications, recent advances, and clinical pertinence in transdermal drug delivery.J. Pharm. Innov.202116355856510.1007/s12247‑020‑09460‑2 32837607
    [Google Scholar]
  78. AtiyehB.S. Abou GhanemO. ChahineF. Microneedling: Percutaneous Collagen Induction (PCI) therapy for management of scars and photoaged skin—scientific evidence and review of the literature.Aesthetic Plast. Surg.202145129630810.1007/s00266‑020‑01927‑4 32875437
    [Google Scholar]
  79. KhetpalS. GhoshD. RoostaeianJ. Innovations in skin and soft tissue aging—a systematic literature review and market analysis of therapeutics and associated outcomes.Aesthetic Plast. Surg.20234741609162210.1007/s00266‑023‑03322‑1 37154849
    [Google Scholar]
  80. SivasubramanianM. ChuangY.C. LoL.W. Evolution of nanoparticle-mediated photodynamic therapy: From superficial to deep-seated cancers.Molecules201924352010.3390/molecules24030520 30709030
    [Google Scholar]
  81. LiuZ. XieZ. LiW. WuX. JiangX. LiG. CaoL. ZhangD. WangQ. XueP. ZhangH. Photodynamic immunotherapy of cancers based on nanotechnology: Recent advances and future challenges.J. Nanobiotechnology202119116010.1186/s12951‑021‑00903‑7 34051801
    [Google Scholar]
  82. ChotaA. GeorgeB.P. AbrahamseH. Recent advances in green metallic nanoparticles for enhanced drug delivery in photodynamic therapy: A therapeutic approach.Int. J. Mol. Sci.2023245480810.3390/ijms24054808 36902238
    [Google Scholar]
  83. KhadkaB. LeeB. KimK.T. Drug delivery systems for personal healthcare by smart wearable patch system.Biomolecules202313692910.3390/biom13060929 37371509
    [Google Scholar]
  84. RaikarA.S. KumarP. RaikarG.V.S. SomnacheS.N. Advances and challenges in IoT-based smart drug delivery systems: A comprehensive review.Appl. Syst. Innov.2023646210.3390/asi6040062
    [Google Scholar]
  85. JooH. LeeY. KimJ. YooJ.S. YooS. KimS. AryaA.K. KimS. ChoiS.H. LuN. LeeH.S. KimS. LeeS.T. KimD.H. Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures.Sci. Adv.202171eabd463910.1126/sciadv.abd4639 33523849
    [Google Scholar]
  86. ReddyM.A. PradhanB.K. QureshiDi. PalS.K. PalK. Internet-of-things-enabled dual-channel iontophoretic drug delivery system for elderly patient medication management.J. Med. Device.202014111210.1115/1.4045933
    [Google Scholar]
  87. KumoluyiR. KhanolkarA. Risk management in drug-device combination product development.Ther. Innov. Regul. Sci.202256568568810.1007/s43441‑022‑00425‑w 35753035
    [Google Scholar]
  88. EichenfieldL.F. McFaldaW. BrabecB. SiegfriedE. KwongP. McBrideM. RiegerJ. WillsonC. DavidsonM. BurnettP. Safety and efficacy of VP-102, a proprietary, drug-device combination product containing cantharidin, 0.7% (w/v), in children and adults with Molluscum Contagiosum.JAMA Dermatol.2020156121315132310.1001/jamadermatol.2020.3238 32965495
    [Google Scholar]
  89. PlanzV. LehrC.M. WindbergsM. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery.J. Control. Release20162428910410.1016/j.jconrel.2016.09.002 27612408
    [Google Scholar]
  90. OliveiraR. AlmeidaI.F. Patient-centric design of topical dermatological medicines.Pharmaceuticals202316461710.3390/ph16040617 37111373
    [Google Scholar]
  91. AraviiskaiaE. LaytonA.M. EstebaranzJ.L.L. OchsendorfF. MicaliG. The synergy between pharmacological regimens and dermocosmetics and its impact on adherence in acne treatment.Dermatol. Res. Pract.2022202211010.1155/2022/3644720 35982914
    [Google Scholar]
  92. VallejosX. WuC. Digital medicine: Innovative drug-device combination as new measure of medication adherence.J. Pharm. Technol.201733413713910.1177/8755122517704212 34860983
    [Google Scholar]
  93. LatozC. LarkinL. Huynh-BaK. Stability considerations for drug-device combination products-21 CFR part 4 update.AAPS Open2023911010.1186/s41120‑023‑00078‑5
    [Google Scholar]
  94. MessickS. SagguM. Ríos QuirozA. Particles in biopharmaceuticals: Causes, characterization, and strategy.Advances in the Pharmaceutical Sciences Series.Springer202025126410.1007/978‑3‑030‑31415‑6_11
    [Google Scholar]
  95. MastersonF. Factors that facilitate regulatory approval for drug-device combination products in the European Union and United States of America: A mixed method study of industry views.Ther. Innov. Regul. Sci.201852448949810.1177/2168479017735142 29714544
    [Google Scholar]
  96. PourkavoosN. Unique risks, benefits, and challenges of developing drug-drug combination products in a pharmaceutical industrial setting.Comb. Prod. Therap201221210.1007/s13556‑012‑0002‑2
    [Google Scholar]
  97. AuriemmaG. TommasinoC. FalconeG. EspositoT. SardoC. AquinoR.P. Additive manufacturing strategies for personalized drug delivery systems and medical devices: Fused filament fabrication and semi solid extrusion.Molecules2022279278410.3390/molecules27092784 35566146
    [Google Scholar]
  98. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797340276241219105142
Loading
/content/journals/cosci/10.2174/0126667797340276241219105142
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test