Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Background

Several studies have shown the benefits of magnetic treatment on the productivity of secondary metabolites, growth, and the state of microalgae cultures.

Objective

This study examined extracted from the cyanobacterium . (30 mT and 60 mT).

Material and Methods

After cyanobacterial culture under magnetic fields of 30 mT and 60 mT, the PE was extracted and lipsticks were formulated. The primary evaluation methods used in this study are melting point, breaking point, linoleic acid peroxidation assay, force of application, stability, surface abnormalities, skin irritation, thixotropy character, dispersibility test, perfume stability, colorimetric assay, antioxidant, and microbial analysis.

Results

The 30 mT treatment showed the highest concentration, purity, dry weight, antioxidant activity, and percentage of PE extraction compared to control cultures. No significant differences were found in the melting point, stability, thixotropy character, dispersibility, or perfume stability tests. The breaking point and force of application decreased significantly during 30 days. Peroxidation assay tests revealed lipstick increased oxidation and antioxidant activity after 30 days of 30 and 60 mT treatments compared to non-PE cultures. The study found that the amount of ΔE increased significantly in cultures without PE over time, while this increase was lower in magnetic field-treated cultures. However, no signs of crystal formation, surface wrinkles, liquid secretion, itching, or skin irritation were observed in 30 days of 30 and 60 mT magnetic treatments compared to control cultures with PE. Microbial analyzes over 30 days showed a significantly lower number of bacteria under magnetic fields than control cultures. In addition, the results of counting and coliform bacteria were negative for thirty days. The antioxidant activity of PE was significantly higher in magnetic field-treated cultures. The number of Staphylococcus aureus decreased significantly in all cultures under magnetic field influence.

Conclusion

The overall results of this study showed that magnetic fields had a significant effect in many evaluation tests on the culture of cyanobacteria As a result, lipsticks made with extracted PE have more antioxidant .

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797320940241008213641
2024-10-21
2025-09-02
Loading full text...

Full text loading...

References

  1. Ramu GanesanA. KannanM. Karthick RajanD. PillayA.A. ShanmugamM. SathishkumarP. Phycoerythrin: A pink pigment from red sources (rhodophyta) for a greener biorefining approach to food applications.Crit. Rev. Food Sci. Nutr.20236331109281094610.1080/10408398.2022.208196235648055
    [Google Scholar]
  2. Hsieh-LoM. CastilloG. Ochoa-BecerraM.A. MojicaL. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability.Algal Res.20194210160010.1016/j.algal.2019.101600
    [Google Scholar]
  3. PunampalamR. KhooK.S. SitN.W. Evaluation of antioxidant properties of phycobiliproteins and phenolic compounds extracted from Bangia atropurpurea .Malays. J. Fund. Appl. Sci.201814228929710.11113/mjfas.v14n2.1096
    [Google Scholar]
  4. Pez JaeschkeD. Rocha TeixeiraI. Damasceno Ferreira MarczakL. Domeneghini MercaliG. Phycocyanin from Spirulina: A review of extraction methods and stability.Food Res. Int.202114311031410.1016/j.foodres.2021.11031433992333
    [Google Scholar]
  5. KuddusM. SinghP. ThomasG. Al-HazimiA. Recent developments in production and biotechnological applications of C-phycocyanin.BioMed Res. Int.201320131910.1155/2013/74285924063013
    [Google Scholar]
  6. TanH.T. YusoffF.M. KhawY.S. Noor MazliN.A.I. NazarudinM.F. ShaharuddinN.A. KatayamaT. AhmadS.A. A review on a hidden gem: Phycoerythrin from blue-green algae.Mar. Drugs20222112810.3390/md2101002836662201
    [Google Scholar]
  7. MourelleM. GómezC. LegidoJ. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy.Cosmetics2017444610.3390/cosmetics4040046
    [Google Scholar]
  8. LopesG. SilvaM. VasconcelosV. The pharmacological potential of cyanobacteria.Academic Press2022
    [Google Scholar]
  9. MoroneJ. AlfeusA. VasconcelosV. MartinsR. Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach.Algal Res.20194110154110.1016/j.algal.2019.101541
    [Google Scholar]
  10. BerthonJ.Y. Nachat-KappesR. BeyM. CadoretJ.P. RenimelI. FilaireE. Marine algae as attractive source to skin care.Free Radic. Res.201751655556710.1080/10715762.2017.135555028770671
    [Google Scholar]
  11. JoshiS. KumariR. UpasaniV.N. Applications of algae in cosmetics: An overview.Int. J. Innov. Res. Sci. Eng. Technol.201872126910.15680/IJIRSET.2018.0702038
    [Google Scholar]
  12. SinghR. PariharP. SinghM. BajguzA. KumarJ. SinghS. SinghV.P. PrasadS.M. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects.Front. Microbiol.2017851510.3389/fmicb.2017.0051528487674
    [Google Scholar]
  13. SinghS. KateB.N. BanerjeeU.C. Bioactive compounds from cyanobacteria and microalgae: An overview.Crit. Rev. Biotechnol.2005253739510.1080/0738855050024849816294828
    [Google Scholar]
  14. MourelleL. GómezC.P. LegidoJ.L. LegidoN. Innovation in the use of microalgae in thermalism.Bol. Soc. Esp. Hidrol. Med.201631536410.23853/bsehm.2017.0204
    [Google Scholar]
  15. LisbyS. GniadeckiR. WulfH.C. UV‐induced DNA damage in human keratinocytes: Quantitation and correlation with long‐term survival.Exp. Dermatol.200514534935510.1111/j.0906‑6705.2005.00282.x15854128
    [Google Scholar]
  16. MoroneJ. LopesG. PretoM. VasconcelosV. MartinsR. Exploitation of filamentous and picoplanktonic cyanobacteria for cosmetic applications: Potential to improve skin structure and preserve dermal matrix components.Mar. Drugs202018948610.3390/md1809048632972038
    [Google Scholar]
  17. KikiM.J. Biopigments of microbial origin and their application in the cosmetic industry.Cosmetics20231024710.3390/cosmetics10020047
    [Google Scholar]
  18. Colorado GómezV.K. Ruiz‐SánchezJ.P. Méndez‐ZavalaA. Morales‐OyervidesL. MontañezJ. Biotechnological production of microbial pigments: Recent findings.Handbook of Natural Colorants202343945710.1002/9781119811749.ch20
    [Google Scholar]
  19. YangG. WangJ. MeiY. LuanZ. Effect of magnetic field on protein and oxygen-production of Chlorella vulgaris .Math. Phys. Fish. Sci.201191116126
    [Google Scholar]
  20. ZhiyongL. SiyuanG. LinL. Effects of magnetic-field on the nutrition of Spirulina platensis and mechanisms analysis.Shengwu Wuli Xuebao2001173587591
    [Google Scholar]
  21. LiuL. JokelaJ. WahlstenM. NowruziB. PermiP. ZhangY.Z. XhaardH. FewerD.P. SivonenK. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN.J. Nat. Prod.20147781784179010.1021/np500106w25069058
    [Google Scholar]
  22. GharibvandS.M. NowruziB. MorowvatM.H. Study the effect of colored and white LED light radiation on the biological activity of Desmonostoc alborizicum cultivated under modified BG-110 medium composition.Iran J Sci202448134335610.1007/s40995‑024‑01596‑x
    [Google Scholar]
  23. DeamiciK.M. CostaJ.A.V. SantosL.O. Magnetic fields as triggers of microalga growth: Evaluation of its effect on Spirulina sp.Bioresour. Technol.2016220626710.1016/j.biortech.2016.08.03827566513
    [Google Scholar]
  24. BagchiS.N. DasP.K. BanerjeeS. SagguM. BagchiD. A bentazone-resistant mutant of cyanobacterium, Synechococcus elongatus PCC7942 adapts different strategies to counteract on bromoxynil- and salt-mediated oxidative stress.Physiol. Mol. Biol. Plants201218211512310.1007/s12298‑012‑0111‑023573048
    [Google Scholar]
  25. NowruziB. AnvarS.A.A. AhariH. Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1.J. Microbiol.202013138153
    [Google Scholar]
  26. AfreenS. FatmaT. Laccase production and simultaneous decolorization of synthetic dyes by cyanobacteria.Int. J. Innov. Res. Sci. Eng. Technol.2013235633568
    [Google Scholar]
  27. MishraS. MishraD.R. A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms.Environ. Res. Lett.201491111400310.1088/1748‑9326/9/11/114003
    [Google Scholar]
  28. JamdadeK. KosthaA. JainN. DwivediS. MalviyaS. KhariaA. Formulation and evaluation of herbal lipstick using Beta vulgaris and Punica granatum extract.Int. J. Pharm. Life Sci.20201111465756579
    [Google Scholar]
  29. PatilC. KadamR. BedisS. Formulation and evaluation of sugar cane wax based lipstick.Int J Trend Sci Res Dev20193827829
    [Google Scholar]
  30. PoomaneeW. KonginK. SriputornK. LeelapornpisidP. Application of factorial experimental design for optimization and development of color lipstick containing antioxidant-rich Sacha inchi oil.Pak. J. Pharm. Sci.20213441437144410.36721/PJPS.2021.34.4.REG.1437‑1444.134799319
    [Google Scholar]
  31. SetyawatyR. PratamaM.R. The usage of jati leaves extract (Tectona grandis Lf) as color of lipstick.Trad Med Magaz2018231162210.22146/mot.31385
    [Google Scholar]
  32. AygunO. AslantasO. OnerS. A survey on the microbiological quality of Carra, a traditional Turkish cheese.J. Food Eng.200566340140410.1016/j.jfoodeng.2004.04.013
    [Google Scholar]
  33. RahmanM.A. AhmadT. MahmudS. BarmanN. HaqueM. UddinM. Isolation, identification and antibiotic sensitivity pattern of Salmonella spp. from locally isolated egg samples.Am J Pure Appl Biosci20191ajpab.019110.34104/ajpab.019.019111
    [Google Scholar]
  34. SanjeeS.A. KarimM.E. Microbiological quality assessment of frozen fish and fish processing materials from Bangladesh.Int. J. Food Sci.201620161610.1155/2016/860568927019847
    [Google Scholar]
  35. SonaniR.R. RastogiR.P. PatelR. MadamwarD. Recent advances in production, purification and applications of phycobiliproteins.World J. Biol. Chem.20167110010910.4331/wjbc.v7.i1.10026981199
    [Google Scholar]
  36. GorgichM. PassosM.L.C. MataT.M. MartinsA.A. SaraivaM.L.M.F.S. CaetanoN.S. Enhancing extraction and purification of phycocyanin from Arthrospira sp. with lower energy consumption.Energy Rep.2020631231810.1016/j.egyr.2020.11.151
    [Google Scholar]
  37. NowruziB. SarvariG. BlancoS. The cosmetic application of cyanobacterial secondary metabolites.Algal Res.20204910195910.1016/j.algal.2020.101959
    [Google Scholar]
  38. MoraesC.C. SalaL. CerveiraG.P. KalilS.J. C-phycocyanin extraction from Spirulina platensis wet biomass.Braz. J. Chem. Eng.2011281454910.1590/S0104‑66322011000100006
    [Google Scholar]
  39. DiniI. LaneriS. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations.Molecules20212613392110.3390/molecules2613392134206931
    [Google Scholar]
  40. AmbergN. FogarassyC. Green consumer behavior in the cosmetics market.Resources20198313710.3390/resources8030137
    [Google Scholar]
  41. SetthamongkolP. KulertW. WanmaneeS. SwamiR. KutakoM. ChanthathamrongsiriN. SemangoenT. HiransuchalertR. In vitro characterization and assessment of a potential cosmetic cream containing phycocyanin extracted from Arthrospira platensis BUUC1503 blue-green algae.J. Appl. Phycol.20233541685169710.1007/s10811‑023‑02988‑z
    [Google Scholar]
  42. HiranoM. OhtaA. AbeK. Magnetic field effects on photosynthesis and growth of the cyanobacterium Spirulina platensis .J. Ferment. Bioeng.199886331331610.1016/S0922‑338X(98)80136‑0
    [Google Scholar]
  43. BorahD. RoutJ. NooruddinT. Application of nanotechnology in bioenergy production from algae and cyanobacteria.Modern Nanotechnol.Springer Nature202326729110.1007/978‑3‑031‑31104‑8_12
    [Google Scholar]
  44. SmallD.P. HünerN.P.A. WanW. Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae.Bioelectromagnetics201233429830810.1002/bem.2070621953117
    [Google Scholar]
  45. LiZ.Y. GuoS.Y. LiL. CaiM.Y. Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor.Bioresour. Technol.200798370070510.1016/j.biortech.2006.01.02416581244
    [Google Scholar]
  46. RepacholiM.H. GreenebaumB. Interaction of static and extremely low frequency electric and magnetic fields with living systems: Health effects and research needs.Bioelectromagnetics1999203133160
    [Google Scholar]
  47. SahebjameiH. AbdolmalekiP. GhanatiF. Effects of magnetic field on the antioxidant enzyme activities of suspension‐cultured tobacco cells.Bioelectromagnetics2007281424710.1002/bem.2026216988990
    [Google Scholar]
  48. GreenL.M. MillerA.B. AgnewD.A. GreenbergM.L. LiJ. VilleneuveP.J. TibshiraniR. Childhood leukemia and personal monitoring of residential exposures to electric and magnetic fields in Ontario, Canada.Cancer Causes Control199910323324310.1023/A:100891940885510454069
    [Google Scholar]
  49. ShashaD. MagogoC. DzombaP. Reversed phase HPLC-UV quantitation of BHA, BHT and TBHQ in food items sold in Bindura supermarkets, Zimbabwe.Int Res J Pure Appl Chem201445578584
    [Google Scholar]
  50. BauerL.M. CostaJ.A.V. da RosaA.P.C. SantosL.O. Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations.Bioresour. Technol.2017244Pt 21425143210.1016/j.biortech.2017.06.03628634128
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797320940241008213641
Loading
/content/journals/cosci/10.2174/0126667797320940241008213641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test