Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Herbal cosmeceuticals are a rapidly expanding sector of the personal care industry, and their use has greatly expanded over time. The advancement of research and development is demonstrated by nanotechnology, which boosts product efficacy by delivering innovative solutions. The application of nanotechnology is growing in the field of cosmeceuticals to address numerous shortcomings of conventional herbal products. Lower penetration and high compound instability of various cosmetic products for prolonged and enhanced compound delivery to beauty-based skin therapy are the main problems with the use of phyto-based cosmeceuticals. Nanosized delivery technologies are currently being used in cosmeceutical industries and products for prolonged and improved delivery of phyto-derived bioactive chemicals to solve these drawbacks. The aseptic sensation of many cosmeceutical products is improved by nanosizing phytocompounds, which also improve skin-protective properties and sustained delivery. Nanocosmeceuticals are now commonly utilized on skin, hair, lips, and nails to treat disorders including wrinkles, photoaging, hyperpigmentations, dandruff, hair damage, chapped lips, . Some of the cutting-edge nanotechnologies now being used for improved delivery of the phytoconstituents in skin care therapy include liposomes, ethosomes, glycerosomes, transferosomes, niosomes, phytosomes, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, nanoemulsions, nanogels, . The advantages of these novel nanocarriers include improved skin penetration, controlled and prolonged drug release, increased stability, site-specific targeting, high entrapment efficiency, and improved bioavailability. Several phytoconstituents such as curcumin, aloe vera, resveratrol, lycopene, tocopherol, quercetin, catechins, and lutein have been successfully nanosized by employing various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, hair, and nail care for their sustained effects. The present article primarily focuses on the use of phytocompounds in various cosmeceutical products, diverse classes of innovative nanocarriers employed for delivering herbal nanocosmeceuticals, and the use of various phytobioactive compounds in novel nanocosmeceutical formulations to improve skin-based therapy.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797312386240722044340
2024-07-26
2025-10-29
Loading full text...

Full text loading...

References

  1. VaishampayanP. RaneM.M. Herbal nanocosmecuticals: A review on cosmeceutical innovation.J. Cosmet. Dermatol.202221115464548310.1111/jocd.1523835833365
    [Google Scholar]
  2. AroraR. AggarwalG. DhingraG.A. NagpalM. Herbal active ingredients used in skin cosmetics.Asian J. Pharm. Clin. Res.201912971510.22159/ajpcr.2019.v12i9.33620
    [Google Scholar]
  3. DongareP.N. BakalR.L. AjmireP.V. PatingeP.A. MoreM.P. ManwarJ.V. An overview on herbal cosmetics and cosmeceuticals.Int. J. Pharm. Sci. Rev. Res.20226817578
    [Google Scholar]
  4. GoyalA. SharmaA. KaurJ. KumariS. GargM. SindhuR.K. RahmanM.H. AkhtarM.F. TagdeP. NajdaA. Banach-AlbińskaB. MasternakK. AlanaziI.S. MohamedH.R.H. El-kottA.F. ShahM. GermoushM.O. Al-malkyH.S. AbukhuwayjahS.H. AltyarA.E. BungauS.G. Abdel-DaimM.M. Bioactive-based cosmeceuticals: An update on emerging trends.Molecules202227382810.3390/molecules2703082835164093
    [Google Scholar]
  5. García-VillegasA. Rojas-GarcíaA. Villegas-AguilarM.C. Fernández-MorenoP. Fernández-OchoaÁ. Cádiz-GurreaM.L. Arráez-RománD. Segura-CarreteroA. Cosmeceutical potential of major tropical and subtropical fruit by-products for a Sustainable revalorization.Antioxidants202211220310.3390/antiox1102020335204085
    [Google Scholar]
  6. SethD. CheldizeK. BrownD. FreemanE.E. Global burden of skin disease: Inequities and innovations.Curr. Dermatol. Rep.20176320421010.1007/s13671‑017‑0192‑729226027
    [Google Scholar]
  7. HoangH.T. MoonJ.Y. LeeY.C. Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives.Cosmetics20218410610.3390/cosmetics8040106
    [Google Scholar]
  8. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  9. PalR.S. PalY. SaraswatN. WalP. WalA. Current review on herbs for derma care.Open Dermatol. J.2019131414610.2174/1874372201913010041
    [Google Scholar]
  10. MichalakM. Plant-derived antioxidants: Significance in skin health and the ageing process.Int. J. Mol. Sci.202223258510.3390/ijms2302058535054770
    [Google Scholar]
  11. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.200914322624619803548
    [Google Scholar]
  12. GoyalN. JeroldF. Biocosmetics: Technological advances and future outlook.Environ. Sci. Pollut. Res. Int.20213010251482516910.1007/s11356‑021‑17567‑334825334
    [Google Scholar]
  13. KaurI. AgrawalR. Nanotechnology: A new paradigm in cosmeceuticals.Recent Pat. Drug Deliv. Formul.20071217118210.2174/18722110778083188819075884
    [Google Scholar]
  14. GuptaV. MohapatraS. MishraH. FarooqU. KumarK. AnsariM. AldawsariM. AlalaiweA. MirzaM. IqbalZ. Nanotechnology in cosmetics and cosmeceuticals-A review of latest advancements.Gels20228317310.3390/gels803017335323286
    [Google Scholar]
  15. Mohd-SetaparS. JohnC. Mohd-NasirH. AzimM. AhmadA. AlshammariM. Application of nanotechnology incorporated with natural ingredients in natural cosmetics.Cosmetics20229611010.3390/cosmetics9060110
    [Google Scholar]
  16. SoutoE.B. FernandesA.R. Martins-GomesC. CoutinhoT.E. DurazzoA. LucariniM. SoutoS.B. SilvaA.M. SantiniA. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals.Appl. Sci.2020105159410.3390/app10051594
    [Google Scholar]
  17. SarafS. KaurC.D. Phytoconstituents as photoprotective novel cosmetic formulations.Pharmacogn. Rev.20104711110.4103/0973‑7847.6531922228936
    [Google Scholar]
  18. ParkK. Role of micronutrients in skin health and function.Biomol. Ther.201523320721710.4062/biomolther.2015.00325995818
    [Google Scholar]
  19. RainaN. RaniR. ThakurV.K. GuptaM. New insights in topical drug delivery for skin disorders: From a nanotechnological perspective.ACS Omega2023822191451916710.1021/acsomega.2c0801637305231
    [Google Scholar]
  20. KumariS. GoyalA. Sönmez GürerE. Algın YaparE. GargM. SoodM. SindhuR.K. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential.Pharmaceutics2022145109110.3390/pharmaceutics1405109135631677
    [Google Scholar]
  21. ChopraH. BibiS. IslamF. AhmadS.U. OlawaleO.A. AlhumaydhiF.A. MarzoukiR. BaigA.A. EmranT.B. Emerging trends in the delivery of resveratrol by nanostructures: Applications of nanotechnology in life sciences.J. Nanomater.20222022308372811710.1155/2022/3083728
    [Google Scholar]
  22. SalehiB. MishraA.P. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP.V.T. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines603009130205595
    [Google Scholar]
  23. QuartaA. GaballoA. PradhanB. PatraS. JenaM. RagusaA. Beneficial oxidative stress-related trans-resveratrol effects in the treatment and prevention of breast cancer.Appl. Sci.202111221104110.3390/app112211041
    [Google Scholar]
  24. ZhouF. HuangX. PanY. CaoD. LiuC. LiuY. ChenA. Resveratrol protects HaCaT cells from ultraviolet B-induced photoaging via upregulation of HSP27 and modulation of mitochondrial caspase-dependent apoptotic pathway.Biochem. Biophys. Res. Commun.2018499366266810.1016/j.bbrc.2018.03.20729604279
    [Google Scholar]
  25. BowersJ.L. TyulmenkovV.V. JerniganS.C. KlingeC.M. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta.Endocrinology2000141103657366710.1210/endo.141.10.772111014220
    [Google Scholar]
  26. VitaleN. KisslingerA. PaladinoS. ProcacciniC. MatareseG. PierantoniG.M. ManciniF.P. TramontanoD. Resveratrol couples apoptosis with autophagy in UVB-irradiated HaCaT cells.PLoS One2013811e8072810.1371/journal.pone.008072824260465
    [Google Scholar]
  27. WangX. ZhangY. Resveratrol alleviates LPS-induced injury in human keratinocyte cell line HaCaT by up-regulation of miR-17.Biochem. Biophys. Res. Commun.2018501110611210.1016/j.bbrc.2018.04.18429704506
    [Google Scholar]
  28. NewtonR.A. CookA.L. RobertsD.W. Helen LeonardJ. SturmR.A. Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes.J. Invest. Dermatol.200712792216222710.1038/sj.jid.570084017460731
    [Google Scholar]
  29. KwonS.H. ChoiH.R. KangY.A. ParkK.C. Depigmenting effect of resveratrol is dependent on FOXO3a activation without SIRT1 activation.Int. J. Mol. Sci.2017186121310.3390/ijms1806121328590410
    [Google Scholar]
  30. BaxterR.A. Anti‐aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation.J. Cosmet. Dermatol.2008712710.1111/j.1473‑2165.2008.00354.x18254804
    [Google Scholar]
  31. MiuraT. MuraokaS. IkedaN. WatanabeM. FujimotoY. Antioxidative and prooxidative action of stilbene derivatives.Pharmacol. Toxicol.200086520320810.1034/j.1600‑0773.2000.pto860502.x10862501
    [Google Scholar]
  32. Moyano-MendezJ.R. FabbrociniG. De StefanoD. MazzellaC. MayolL. ScognamiglioI. CarnuccioR. AyalaF. La RotondaM.I. De RosaG. Enhanced antioxidant effect of trans -resveratrol: Potential of binary systems with polyethylene glycol and cyclodextrin.Drug Dev. Ind. Pharm.201440101300130710.3109/03639045.2013.81741623862976
    [Google Scholar]
  33. ParasuramanS. Anand DavidA.V. ArulmoliR. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.19404428082789
    [Google Scholar]
  34. BatihaG.E.S. BeshbishyA.M. IkramM. MullaZ.S. El-HackM.E.A. TahaA.E. AlgammalA.M. ElewaY.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin.Foods20209337410.3390/foods903037432210182
    [Google Scholar]
  35. XuD. HuM.J. WangY.Q. CuiY.L. Antioxidant activities of quercetin and its complexes for medicinal application.Molecules2019246112310.3390/molecules2406112330901869
    [Google Scholar]
  36. ZhuX. LiN. WangY. DingL. ChenH. YuY. ShiX. Protective effects of quercetin on UVB irradiation-induced cytotoxicity through ROS clearance in keratinocyte cells.Oncol. Rep.201737120921810.3892/or.2016.521727840962
    [Google Scholar]
  37. AghababaeiF. HadidiM. Recent advances in potential health benefits of quercetin.Pharmaceuticals2023167102010.3390/ph1607102037513932
    [Google Scholar]
  38. NagataH. TakekoshiS. TakeyamaR. HommaT. Yoshiyuki OsamuraR. Quercetin enhances melanogenesis by increasing the activity and synthesis of tyrosinase in human melanoma cells and in normal human melanocytes.Pigment Cell Res.2004171667310.1046/j.1600‑0749.2003.00113.x14717847
    [Google Scholar]
  39. ChoiM.H. ShinH.J. Anti-Melanogenesis effect of quercetin.Cosmetics2016321810.3390/cosmetics3020018
    [Google Scholar]
  40. DilokthornsakulW. DhippayomT. DilokthornsakulP. The clinical effect of glutathione on skin color and other related skin conditions: A systematic review.J. Cosmet. Dermatol.201918372873710.1111/jocd.1291030895708
    [Google Scholar]
  41. BanerjeeS. ChatterjeeJ. Efficient extraction strategies of tea (Camellia sinensis) biomolecules.J. Food Sci. Technol.20155263158316826028699
    [Google Scholar]
  42. BaeJ. KimN. ShinY. KimS.Y. KimY.J. Activity of catechins and their applications.Biomed. Dermatol.202041810.1186/s41702‑020‑0057‑8
    [Google Scholar]
  43. NagleD.G. FerreiraD. ZhouY.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives.Phytochemistry200667171849185510.1016/j.phytochem.2006.06.02016876833
    [Google Scholar]
  44. OyetakinWhiteP. TriboutH. BaronE. Protective mechanisms of green tea polyphenols in skin.Oxid. Med. Cell. Longev.201220121810.1155/2012/56068222792414
    [Google Scholar]
  45. CharoenchonN. RhodesL.E. NicolaouA. WilliamsonG. WatsonR.E.B. FarrarM.D. Ultraviolet radiation‐induced degradation of dermal extracellular matrix and protection by green tea catechins: A randomized controlled trial.Clin. Exp. Dermatol.20224771314132310.1111/ced.1517935279873
    [Google Scholar]
  46. FengB. FangY. WeiS.M. Effect and mechanism of epigallocatechin-3-gallate (EGCG). against the hydrogen peroxide-induced oxidative damage in human dermal fibroblasts.J. Cosmet. Sci.2013641354423449129
    [Google Scholar]
  47. Cerbin-KoczorowskaM. Waszyk-NowaczykM. BakunP. GoslinskiT. KoczorowskiT. Current view on green tea catechins formulations, their interactions with selected drugs, and prospective applications for various health conditions.Appl. Sci.20211111490510.3390/app11114905
    [Google Scholar]
  48. KochW. ZagórskaJ. MarzecZ. Kukula-KochW. Applications of tea (Camellia sinensis) and its active constituents in cosmetics.Molecules20192423427710.3390/molecules2423427731771249
    [Google Scholar]
  49. XiaJ. SongX. BiZ. ChuW. WanY. UV-induced NF-kappaB activation and expression of IL-6 is attenuated by (-)-epigallocatechin-3-gallate in cultured human keratinocytes in vitro.Int. J. Mol. Med.200516594395016211268
    [Google Scholar]
  50. JiaY. MaoQ. YangJ. DuN. ZhuY. MinW. (-)-Epigallocatechin-3-Gallate protects human skin fibroblasts from ultraviolet a induced photoaging.Clin. Cosmet. Investig. Dermatol.20231614915910.2147/CCID.S39854736704608
    [Google Scholar]
  51. ShokoT. MaharajV.J. NaidooD. TselanyaneM. NthambeleniR. KhorombiE. ApostolidesZ. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS.BMC Complement. Altern. Med.20181815410.1186/s12906‑018‑2112‑129415712
    [Google Scholar]
  52. KongK.W. KhooH.E. PrasadK.N. IsmailA. TanC.P. RajabN.F. Revealing the power of the natural red pigment lycopene.Molecules201015295998710.3390/molecules1502095920335956
    [Google Scholar]
  53. ImranM. GhoratF. Ul-HaqI. Ur-RehmanH. AslamF. HeydariM. ShariatiM.A. OkuskhanovaE. YessimbekovZ. ThiruvengadamM. HashempurM.H. RebezovM. Lycopene as a natural antioxidant used to prevent human health disorders.Antioxidants20209870610.3390/antiox908070632759751
    [Google Scholar]
  54. PetyaevI.M. PristenskyD.V. MorgunovaE.Y. ZigangirovaN.A. TsibezovV.V. ChalykN.E. KlochkovV.A. BlinovaV.V. BogdanovaT.M. IljinA.A. SulkovskayaL.S. ChernyshovaM.P. LozbiakovaM.V. KyleN.H. BashmakovY.K. Lycopene presence in facial skin corneocytes and sebum and its association with circulating lycopene isomer profile: Effects of age and dietary supplementation.Food Sci. Nutr.2019741157116510.1002/fsn3.79931024688
    [Google Scholar]
  55. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.7090222228951
    [Google Scholar]
  56. WawrzyniakD. RolleK. BarciszewskiJ. [Lycopene – the impact of supplementation on the skin aging processPostepy Biochem.2023691475337493553
    [Google Scholar]
  57. StahlW. EichlerO. SiesH. HeinrichU. WisemanS. TronnierH. Dietary tomato paste protects against ultraviolet light-induced erythema in humans.J. Nutr.200113151449145110.1093/jn/131.5.144911340098
    [Google Scholar]
  58. PoljšakB. DahmaneR. Free radicals and extrinsic skin aging.Dermatol. Res. Pract.201220121410.1155/2012/13520622505880
    [Google Scholar]
  59. PandelR. PoljšakB. GodicA. DahmaneR. Skin photoaging and the role of antioxidants in its prevention.ISRN Dermatol.2013201311110.1155/2013/93016424159392
    [Google Scholar]
  60. PaveseJ.M. FarmerR.L. BerganR.C. Inhibition of cancer cell invasion and metastasis by genistein.Cancer Metastasis Rev.201029346548210.1007/s10555‑010‑9238‑z20730632
    [Google Scholar]
  61. KřížováL. DadákováK. KašparovskáJ. KašparovskýT. Isoflavones.Molecules2019246107610.3390/molecules2406107630893792
    [Google Scholar]
  62. Sharifi-RadJ. QuispeC. ImranM. RaufA. NadeemM. GondalT.A. AhmadB. AtifM. MubarakM.S. SytarO. ZhilinaO.M. GarsiyaE.R. SmeriglioA. TrombettaD. PonsD.G. MartorellM. CardosoS.M. RazisA.F.A. SunusiU. KamalR.M. RotariuL.S. ButnariuM. DoceaA.O. CalinaD. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits.Oxid. Med. Cell. Longev.2021202113610.1155/2021/326813634336089
    [Google Scholar]
  63. ThangavelP. Puga-OlguínA. Rodríguez-LandaJ.F. ZepedaR.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases.Molecules20192421389210.3390/molecules2421389231671813
    [Google Scholar]
  64. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.0102133041781
    [Google Scholar]
  65. GonçalvesG.M.S. SilvaG.H. BarrosP.P. SrebernichS.M. ShiraishiC.T.C. CamargosV.R. LascaT.B. Use of Curcuma longa in cosmetics: Extraction of curcuminoid pigments, development of formulations, and in vitro skin permeation studies.Braz. J. Pharm. Sci.201450488589310.1590/S1984‑82502014000400024
    [Google Scholar]
  66. VaughnA.R. BranumA. SivamaniR.K. Effects of turmeric (Curcuma longa) on skin health: A systematic review of the clinical evidence.Phytother. Res.20163081243126410.1002/ptr.564027213821
    [Google Scholar]
  67. AmalrajA. PiusA. GopiS. GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review.J. Tradit. Complement. Med.20177220523310.1016/j.jtcme.2016.05.00528417091
    [Google Scholar]
  68. KumarB. AggarwalR. PrakashU. SahooP.K. Emerging therapeutic potential of curcumin in the management of dermatological diseases: An extensive review of drug and pharmacological activities.Future J Pharmaceut Sci2023914210.1186/s43094‑023‑00493‑1
    [Google Scholar]
  69. GarcellaP. WijayaT.H. KurniawanD.W. Narrative review: Herbal nanocosmetics for anti-aging.JPSCR202381637710.20961/jpscr.v8i1.57675
    [Google Scholar]
  70. ShanbhagS. NayakA. NarayanR. NayakU.Y. Anti-aging and sunscreens: Paradigm shift in cosmetics.Adv. Pharm. Bull.20199334835910.15171/apb.2019.04231592127
    [Google Scholar]
  71. GancevicieneR. LiakouA.I. TheodoridisA. MakrantonakiE. ZouboulisC.C. Skin anti-aging strategies.Dermato-Endocrinol.20124330831910.4161/derm.22804
    [Google Scholar]
  72. BinicI. LazarevicV. LjubenovicM. MojsaJ. SokolovicD. Skin ageing: Natural weapons and strategies.Evid. Based Complement. Alternat. Med.2013201311010.1155/2013/82724823431351
    [Google Scholar]
  73. FarageM.A. MillerK.W. ElsnerP. MaibachH.I. Characteristics of the aging skin.Adv. Wound Care20132151010.1089/wound.2011.035624527317
    [Google Scholar]
  74. LuP. TakaiK. WeaverV.M. WerbZ. Extracellular matrix degradation and remodeling in development and disease.Cold Spring Harb. Perspect. Biol.2011312a00505810.1101/cshperspect.a00505821917992
    [Google Scholar]
  75. Gromkowska-KępkaK.J. Puścion-JakubikA. Markiewicz-ŻukowskaR. SochaK. The impact of ultraviolet radiation on skin photoaging — review of in vitro studies.J. Cosmet. Dermatol.202120113427343110.1111/jocd.1403333655657
    [Google Scholar]
  76. ShinJ.W. KwonS.H. ChoiJ.Y. NaJ.I. HuhC.H. ChoiH.R. ParkK.C. Molecular mechanisms of dermal aging and antiaging approaches.Int. J. Mol. Sci.2019209212610.3390/ijms2009212631036793
    [Google Scholar]
  77. Freitas-RodríguezS. FolguerasA.R. López-OtínC. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond.Biochim. Biophys. Acta Mol. Cell Res.20171864112015202510.1016/j.bbamcr.2017.05.00728499917
    [Google Scholar]
  78. ImA.R. KimY.M. ChinY.W. ChaeS. Protective effects of compounds from Garcinia mangostana L. (mangosteen) against UVB damage in HaCaT cells and hairless mice.Int. J. Mol. Med.20174061941194910.3892/ijmm.2017.318829039482
    [Google Scholar]
  79. MaR.J. YangL. BaiX. LiJ.Y. YuanM.Y. WangY.Q. XieY. HuJ.M. ZhouJ. Phenolic constituents with antioxidative, tyrosinase inhibitory and anti-aging activities from Dendrobium loddigesii Rolfe.Nat. Prod. Bioprospect.20199532933610.1007/s13659‑019‑00219‑y31630376
    [Google Scholar]
  80. MorikawaT. NagatomoA. KitazawaK. MuraokaO. KikuchiT. YamadaT. TanakaR. NinomiyaK. Collagen synthesis promoting effects of andiroba oil and its limonoid constituents in normal human dermal fibroblasts.J. Oleo Sci.201867101271127710.5650/jos.ess1814330305560
    [Google Scholar]
  81. TanH. SonamT. ShimizuK. The potential of triterpenoids from loquat leaves (Eryobotrya japonica) for prevention and treatment of skin disorder.Int. J. Mol. Sci.2017185103010.3390/ijms1805103028492484
    [Google Scholar]
  82. HenrietE. JägerS. TranC. BastienP. MicheletJ.F. MinondoA.M. FormanekF. Dalko-CsibaM. Lortat-JacobH. BretonL. VivèsR.R. A jasmonic acid derivative improves skin healing and induces changes in proteoglycan expression and glycosaminoglycan structure.Biochim. Biophys. Acta, Gen. Subj.2017186192250226010.1016/j.bbagen.2017.06.00628602514
    [Google Scholar]
  83. KimJ.E. JangS.G. LeeC.H. LeeJ.Y. ParkH. KimJ.H. LeeS. KimS.H. ParkE.Y. LeeK.W. ShinH.S. Beneficial effects on skin health using polysaccharides from red ginseng by‐product.J. Food Biochem.2019438e1296110.1111/jfbc.1296131368552
    [Google Scholar]
  84. KamilaM.Z.P. HelenaR. The effectiveness of ferulic acid and microneedling in reducing signs of photoaging: A split‐face comparative study.Dermatol. Ther.2020336e1400010.1111/dth.1400032654286
    [Google Scholar]
  85. ZhouH. LuoD. ChenD. TanX. BaiX. LiuZ. YangX. LiuW. Current advances of nanocarrier technology-based active cosmetic ingredients for beauty applications.Clin. Cosmet. Investig. Dermatol.20211486788710.2147/CCID.S31342934285534
    [Google Scholar]
  86. LohaniA. VermaA. JoshiH. YadavN. KarkiN. Nanotechnology-based cosmeceuticals.ISRN Dermatol.2014201411410.1155/2014/84368724963412
    [Google Scholar]
  87. BadeaG. LăcătuşuI. BadeaN. OttC. MegheaA. Use of various vegetable oils in designing photoprotective nanostructured formulations for UV protection and antioxidant activity.Ind. Crops Prod.201567182410.1016/j.indcrop.2014.12.049
    [Google Scholar]
  88. RazaK. SinghB. SinglaN. NegiP. SingalP. KatareO.P. Nano-lipoidal carriers of isotretinoin with anti-aging potential: formulation, characterization and biochemical evaluation.J. Drug Target.201321543544210.3109/1061186X.2012.76122423336181
    [Google Scholar]
  89. DraelosZ.D. Retinoids in cosmetics.Cosmetic Dermatology.200518135
    [Google Scholar]
  90. MukherjeeS. DateA. PatravaleV. KortingH.C. RoederA. WeindlG. Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety.Antioxidants202211356335326212
    [Google Scholar]
  91. PlianbanchangP. TungpraditW. TiaboonchaiW. Efficacy and safety of curcuminoids loaded solid lipid nanoparticles facial cream as an antiaging agent.Naresuan Univ. J.20071527381
    [Google Scholar]
  92. ChoW.K. KimH.I. KimS.Y. SeoH.H. SongJ. KimJ. ShinD.S. JoY. ChoiH. LeeJ.H. MohS.H. Anti-Aging effects of Leontopodium Alpinum (Edelweiss) callus culture extract through transcriptome profiling.Genes202011223010.3390/genes1102023032098197
    [Google Scholar]
  93. CoradiniK. LimaF.O. OliveiraC.M. ChavesP.S. AthaydeM.L. CarvalhoL.M. BeckR.C.R. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects.Eur. J. Pharm. Biopharm.201488117818510.1016/j.ejpb.2014.04.00924780440
    [Google Scholar]
  94. NgocL.T.N. TranV.V. MoonJ.Y. ChaeM. ParkD. LeeY.C. Recent trends of sunscreen cosmetic: An update review.Cosmetics2019646410.3390/cosmetics6040064
    [Google Scholar]
  95. GuptaA. SahuS. GondS.P. SinghB. RajendiranA. SinghA. Pharmacological review of chemical agents used in sunscreen preparations.J. Pharm. Negat. Results202213526922702
    [Google Scholar]
  96. KatiyarS. ElmetsC. Green tea polyphenolic antioxidants and skin photoprotection (Review).Int. J. Oncol.20011861307131310.3892/ijo.18.6.130711351267
    [Google Scholar]
  97. LourençoS.C. Moldão-MartinsM. AlvesV.D. Antioxidants of natural plant origins: From sources to food industry applications.Molecules20192422413210.3390/molecules2422413231731614
    [Google Scholar]
  98. SchneiderS.L. LimH.W. A review of inorganic UV filters zinc oxide and titanium dioxide.Photodermatol. Photoimmunol. Photomed.201935644244610.1111/phpp.1243930444533
    [Google Scholar]
  99. HansonJ.E. AntonacciC. Natural sunscreen composition.US Patent 90560632015
  100. NieuwenhuijsenB. Composition of a water-soluble sunscreen preparation for acne rosacea.US Patent 82165552012
  101. GonzalezA.D. PechkoA.H. KalafskyR.E. Photostable sunscreen compositions and methods of stabilizing.US Patent 6440402B12002
  102. GeoffreyK. MwangiA.N. MaruS.M. Sunscreen products: Rationale for use, formulation development and regulatory considerations.Saudi Pharm. J.20192771009101810.1016/j.jsps.2019.08.00331997908
    [Google Scholar]
  103. SantosA.C. MartoJ. Chá-CháR. MartinsA.M. Pereira-SilvaM. RibeiroH.M. VeigaF. Nanotechnology-based sunscreens—a review.Mater. Today Chem.20222310070910.1016/j.mtchem.2021.100709
    [Google Scholar]
  104. SmijsT. PavelS. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness.Nanotechnol. Sci. Appl.201149511210.2147/NSA.S1941924198489
    [Google Scholar]
  105. BullaM.K. HernandesL. BaessoM.L. NogueiraA.C. BentoA.C. BortoluzziB.B. SerraL.Z. CortezD.A.G. Evaluation of photoprotec¬tive potential and percutaneous penetration by photoacoustic spectros¬copy of the Schinus terebinthifolius raddi extract.Photochem. Photobiol.201591355856610.1111/php.1241925580770
    [Google Scholar]
  106. GanesanP. ChoiD.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy.Int. J. Nanomedicine2016111987200710.2147/IJN.S10470127274231
    [Google Scholar]
  107. AsteteC.E. DolliverD. WhaleyM. KhachatryanL. SabliovC.M. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant.ACS Nano20115129313932510.1021/nn102845t22017172
    [Google Scholar]
  108. NiculaeG. LacatusuI. BadeaN. StanR. VasileB.S. MegheaA. Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations.Photochem. Photobiol. Sci.201413470371610.1039/c3pp50290b24590004
    [Google Scholar]
  109. PurnamawatiS. IndrastutiN. DanartiR. SaefudinT. The role of moisturizers in addressing various kinds of dermatitis: A review.Clin. Med. Res.2017153-4758710.3121/cmr.2017.136329229630
    [Google Scholar]
  110. OsseiranS. CruzJ.D. JeongS. WangH. FthenakisC. EvansC.L. Characterizing stratum corneum structure, barrier function, and chemical content of human skin with coherent Raman scattering imaging.Biomed. Opt. Express20189126425644310.1364/BOE.9.00642531065440
    [Google Scholar]
  111. RibeiroR. BarretoS. OstroskyE. Rocha-FilhoP. VeríssimoL. FerrariM. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent.Molecules20152022492250910.3390/molecules2002249225648593
    [Google Scholar]
  112. WissingS.A. MüllerR.H. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity – in vivo study.Eur. J. Pharm. Biopharm.2003561677210.1016/S0939‑6411(03)00040‑712837483
    [Google Scholar]
  113. KhamenehB. HalimiV. JaafariM.R. GolmohammadzadehS. Safranal-loaded solid lipid nanoparticles: Evaluation of sunscreen and moisturizing potential for topical applications.Iran. J. Basic Med. Sci.2015181586325810877
    [Google Scholar]
  114. BernardiD.S. PereiraT.A. MacielN.R. BortolotoJ. VieraG.S. OliveiraG.C. Rocha-FilhoP.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments.J. Nanobiotechnology2011914410.1186/1477‑3155‑9‑4421952107
    [Google Scholar]
  115. RibeiroR.C. BarretoS.M. OstroskyE.A. da Rocha-FilhoP.A. VerissimoL.M. FerrariM. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent.Molecules201520224922509
    [Google Scholar]
  116. MukhopadhyayP. Cleansers and their role in various dermatological disorders.Indian J. Dermatol.20115612610.4103/0019‑5154.77542 21572782
    [Google Scholar]
  117. ChenY.L. KuanW.H. LiuC.L. Comparative study of the composition of sweat from eccrine and apocrine sweat glands during exercise and in heat.Int. J. Environ. Res. Public Health20201710337710.3390/ijerph17103377 32408694
    [Google Scholar]
  118. TroccazM. GaïaN. BeccucciS. SchrenzelJ. CayeuxI. StarkenmannC. LazarevicV. Mapping axillary microbiota responsible for body odours using a culture-independent approach.Microbiome201531310.1186/s40168‑014‑0064‑3 25653852
    [Google Scholar]
  119. ChenH. ZhaoQ. ZhongQ. DuanC. KrutmannJ. WangJ. XiaJ. Skin microbiome, metabolome and skin phenome, from the perspectives of skin as an ecosystem.Phenomics20222636338210.1007/s43657‑022‑00073‑y 36939800
    [Google Scholar]
  120. MitaniK. TakanoF. KawabataT. AllamA.E. OtaM. TakahashiT. YahagiN. SakuradaC. FushiyaS. OhtaT. Suppression of melanin synthesis by the phenolic constituents of sappanwood (Caesalpinia sappan).Planta Med.20137913744 23154842
    [Google Scholar]
  121. KashifM. AkhtarN. MustafaR. An overview of dermatological and cosmeceutical benefits of Diospyros kaki and its phytoconstituents.Rev. Bras. Farmacogn.201727565066210.1016/j.bjp.2017.06.004
    [Google Scholar]
  122. Nanocyclic cleanser pink.2023Available From: http://www.nanocyclic.com/ProductDetails. asp? ProductCode=CY-40P
  123. YangD. PornpattananangkulD. NakatsujiT. ChanM. CarsonD. HuangC.M. ZhangL. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes.Biomaterials200930306035604010.1016/j.biomaterials.2009.07.033 19665786
    [Google Scholar]
  124. PornpattananangkulD. FuV. ThamphiwatanaS. ZhangL. ChenM. VecchioJ. GaoW. HuangC.M. ZhangL. In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids.Adv. Healthc. Mater.20132101322132810.1002/adhm.201300002 23495239
    [Google Scholar]
  125. Pereira-SilvaM. MartinsA.M. Sousa-OliveiraI. RibeiroH.M. VeigaF. MartoJ. Paiva-SantosA.C. Nanomaterials in hair care and treatment.Acta Biomater.2022142143510.1016/j.actbio.2022.02.025 35202853
    [Google Scholar]
  126. Le Floc’hC. ChenitiA. ConnétableS. PiccardiN. VincenziC. TostiA. Effect of a nutritional supplement on hair loss in women.J. Cosmet. Dermatol.2015141768210.1111/jocd.12127 25573272
    [Google Scholar]
  127. FernándezE. Martínez-TeipelB. ArmengolR. BarbaC. CoderchL. Efficacy of antioxidants in human hair.J. Photochem. Photobiol. B201211714615610.1016/j.jphotobiol.2012.09.009 23123594
    [Google Scholar]
  128. DarioM.F. PahlR. de CastroJ.R. de LimaF.S. KanekoT.M. PintoC.A.S.O. BabyA.R. VelascoM.V.R. Efficacy of Punica granatum L. hydroalcoholic extract on properties of dyed hair exposed to UVA radiation.J. Photochem. Photobiol. B201312014214710.1016/j.jphotobiol.2012.12.011 23380541
    [Google Scholar]
  129. GłówkaE. Wosicka-FrąckowiakH. HylaK. StefanowskaJ. JastrzębskaK. KlapiszewskiŁ. JesionowskiT. CalK. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles.Eur. J. Pharm. Biopharm.2014881758410.1016/j.ejpb.2014.06.019 25014763
    [Google Scholar]
  130. JungS. OtbergN. ThiedeG. RichterH. SterryW. PanznerS. LademannJ. Innovative liposomes as a transfollicular drug delivery system: Penetration into porcine hair follicles.J. Invest. Dermatol.200612681728173210.1038/sj.jid.5700323 16645589
    [Google Scholar]
  131. KonrádsdóttirF. OgmundsdóttirH. SigurdssonV. LoftssonT. Drug targeting to the hair follicles: A cyclodextrin-based drug delivery.AAPS PharmSciTech200910126626910.1208/s12249‑009‑9205‑6 19280346
    [Google Scholar]
  132. DesaiP.R. ShahP.P. HaydenP. SinghM. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid-modified nanoparticles.Pharm. Res.20133041037104910.1007/s11095‑012‑0939‑6 23187866
    [Google Scholar]
  133. AmatoS.W. FarerA. HoyteW.M. PavlovskyM. Coatings formammalian nails that include nanosized particles.U.S. Patent 20070022072007
  134. MegheaA. Pharmaceuticals and cosmeceuticals based on soft nanotechnology techniques with antioxidative, immunostimulative and other therapeutic activities.Recent Pat. Nanotechnol.20082213714510.2174/187221008784534541 19076048
    [Google Scholar]
  135. NanoLabs2024Available Fromhttp://nanolabs.us/press-releases/green-chemistryand-new-thinking-at-playas-nano-labs-ctle-receives-provisional-patent-for-unique-nanotech-nail-polish/
    [Google Scholar]
  136. SaikiaA.P. RyakalaV.K. SharmaP. GoswamiP. BoraU. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics.J. Ethnopharmacol.2006106214915710.1016/j.jep.2005.11.033 16473486
    [Google Scholar]
  137. AbbasiA.M. KhanM.A. AhmadM. ZafarM. JahanS. SultanaS. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan.J. Ethnopharmacol.2010128232233510.1016/j.jep.2010.01.052 20138210
    [Google Scholar]
  138. PannuJ. McCarthyA. MartinA. HamoudaT. CiottiS. FothergillA. SutcliffeJ. NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans.Antimicrob. Agents Chemother.20095383273327910.1128/AAC.00218‑09 19433562
    [Google Scholar]
  139. EffiongD.E. UwahT.O. JumboE.U. AkpabioA.E. Nanotechnology in cosmetics: Basics, current trends and safety concerns-a review.Adv. Nano Res.202091122
    [Google Scholar]
  140. DweckA.C. Natural ingredients for colouring and styling.Int. J. Cosmet. Sci.200224528730210.1046/j.1467‑2494.2002.00148.x 18498522
    [Google Scholar]
  141. KamairudinN. GaniS. MasoumiH. HashimP. Optimization of natural lipstick formulation based on pitaya (Hylocereus polyrhizus) seed oil using D-optimal mixture experimental design.Molecules20141910166721668310.3390/molecules191016672 25325152
    [Google Scholar]
  142. Al-AlwaniM.A.M. MohamadA.B. KadhumA.A.H. LudinN.A. Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513813013710.1016/j.saa.2014.11.018 25483560
    [Google Scholar]
  143. AhmadI. AkhterS. AhmadM.Z. ShamimM. RizviM.A. KharR.K. AhmadF.J. Collagen loaded nano-sized surfactant based dispersion for topical application: Formulation development, characterization and safety study.Pharm. Dev. Technol.201419446046710.3109/10837450.2013.795167 23675949
    [Google Scholar]
  144. RahimpourY. HamishehkarH. Liposomes in cosmeceutics.Expert Opin. Drug Deliv.20129444345510.1517/17425247.2012.666968 22413847
    [Google Scholar]
  145. ShawT.K. PaulP. ChatterjeeB. Research-based findings on scope of liposome-based cosmeceuticals: An updated review.Future J. Pharm. Sci.2022814610.1186/s43094‑022‑00435‑3
    [Google Scholar]
  146. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  147. GuglevaV. IvanovaN. SotirovaY. AndonovaV. Dermal drug delivery of phytochemicals with phenolic structure via lipid-based nanotechnologies.Pharmaceuticals202114983710.3390/ph14090837 34577536
    [Google Scholar]
  148. Golubovic-LiakopoulosN. SimonS.R. ShahB. Nanotechnology use with cosmeceuticals.Semin. Cutan. Med. Surg.201130317618010.1016/j.sder.2011.06.003 21925373
    [Google Scholar]
  149. PatraS. RoyE. MadhuriR. SharmaP.K. Retracted Article: The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin.Biomater. Sci.20164341842910.1039/C5BM00433K26631310
    [Google Scholar]
  150. ChenY. WuQ. ZhangZ. YuanL. LiuX. ZhouL. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics.Molecules20121755972598710.3390/molecules17055972 22609787
    [Google Scholar]
  151. YouJ DaiDB HeWJ [Preparation of curcumin-loaded long-circulating liposomes and its pharmacokinetics in rats].China J Chin Materia Medica201439712381242
    [Google Scholar]
  152. MancaM.L. CastangiaI. ZaruM. NácherA. ValentiD. Fernàndez-BusquetsX. FaddaA.M. ManconiM. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring.Biomaterials20157110010910.1016/j.biomaterials.2015.08.034 26321058
    [Google Scholar]
  153. ShuklaP. GuptaG. SingodiaD. ShuklaR. VermaA.K. DwivediP. KansalS. MishraP.R. Emerging trend in nano-engineered polyelectrolyte-based surrogate carriers for delivery of bioactives.Expert Opin. Drug Deliv.201079993101110.1517/17425247.2010.510830 20716016
    [Google Scholar]
  154. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.72415 22247858
    [Google Scholar]
  155. HuaS. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives.Front. Pharmacol.2015621910.3389/fphar.2015.00219 26483690
    [Google Scholar]
  156. MoulaouiK. CaddeoC. MancaM.L. CastangiaI. ValentiD. EscribanoE. AtmaniD. FaddaA.M. ManconiM. Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: In vitro and in vivo wound healing potential.Eur. J. Med. Chem.20158917918810.1016/j.ejmech.2014.10.047 25462238
    [Google Scholar]
  157. CastangiaI. CaddeoC. MancaM.L. CasuL. LatorreA.C. Díez-SalesO. Ruiz-SauríA. BacchettaG. FaddaA.M. ManconiM. Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries.Carbohydr. Polym.201513465766310.1016/j.carbpol.2015.08.037 26428169
    [Google Scholar]
  158. MancaM.L. CastangiaI. CaddeoC. PandoD. EscribanoE. ValentiD. LampisS. ZaruM. FaddaA.M. ManconiM. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles.Colloids Surf. B Biointerfaces201412356657410.1016/j.colsurfb.2014.09.059 25444664
    [Google Scholar]
  159. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  160. RajanR. JoseS. Biju MukundV.P. VasudevanD. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.85524 22171309
    [Google Scholar]
  161. KumarA. NayakA. GhatuaryS.K. DasguptaS. JainA.P. Trans-ferosome: A recent approach for transdermal drug delivery.J. Drug Deliv. Ther.201885-s10010410.22270/jddt.v8i5‑s.1981
    [Google Scholar]
  162. SwarnlataS. Novel transferosomal cosmetic herbal formulation of curcumin for photo chemoprevention of skin.Planta Med.200975975PI3910.1055/s‑0029‑1234803
    [Google Scholar]
  163. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  164. CovielloT. TrottaA.M. MarianecciC. CarafaM. Di MarzioL. RinaldiF. Di MeoC. AlhaiqueF. MatricardiP. Gel-embedded niosomes: Preparation, characterization and release studies of a new system for topical drug delivery.Colloids Surf. B Biointerfaces201512529129910.1016/j.colsurfb.2014.10.060 25524220
    [Google Scholar]
  165. TavanoL. AielloR. IoeleG. PicciN. MuzzalupoR. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties.Colloids Surf. B Biointerfaces201411871310.1016/j.colsurfb.2014.03.016 24709252
    [Google Scholar]
  166. TavanoL. MuzzalupoR. PicciN. de CindioB. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications.Colloids Surf. B Biointerfaces201411414414910.1016/j.colsurfb.2013.09.055 24176892
    [Google Scholar]
  167. MawaziS.M. AnnT.J. WidodoR.T. Application of niosomes in cosmetics: A systematic review.Cosmetics20229612710.3390/cosmetics9060127
    [Google Scholar]
  168. AllamA.N. KomeilI.A. AbdallahO.Y. Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization.Acta Pharm.201565328529710.1515/acph‑2015‑0029 26431106
    [Google Scholar]
  169. ShakeriA. SahebkarA. Phytosome: A fatty solution for efficient formulation of phytopharmaceuticals.Recent Pat. Drug Deliv. Formul.201610171010.2174/1872211309666150813152305 26268361
    [Google Scholar]
  170. BombardelliE. Phytosome: New cosmetic delivery system.Boll. Chim. Farm.199113011431438 1809296
    [Google Scholar]
  171. DamleM. MallyaR. Development and evaluation of a novel delivery system containing phytophospholipid complex for skin aging.AAPS PharmSciTech201617360761710.1208/s12249‑015‑0386‑x 26285673
    [Google Scholar]
  172. GunasekaranT. HaileT. NigusseT. DhanarajuM.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine.Asian Pac. J. Trop. Biomed.20144Suppl. 1S1S710.12980/APJTB.4.2014C980 25183064
    [Google Scholar]
  173. SarafS. GuptaA. AlexanderA. KhanJ. JangdeM. SarafS. Advancements and avenues in nanophytomedicines for better pharmacological responses.J. Nanosci. Nanotechnol.20151564070407910.1166/jnn.2015.10333 26369014
    [Google Scholar]
  174. DemirB. BarlasF.B. GulerE. GumusP.Z. CanM. YavuzM. CoskunolH. TimurS. Gold nanoparticle loaded phytosomal systems: Synthesis, characterization and in vitro investigations.RSC Advances2014465346873469510.1039/C4RA05108D
    [Google Scholar]
  175. SinghD. RawatM.S. SemaltyA. SemaltyM. Rutin-phospholipid complex: An innovative technique in novel drug delivery system- NDDS.Curr. Drug Deliv.20129330531410.2174/156720112800389070 22283645
    [Google Scholar]
  176. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.235156 30065762
    [Google Scholar]
  177. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  178. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  179. AssaliM. ZaidA.N. Features, applications, and sustainability of lipid nanoparticles in cosmeceuticals.Saudi Pharm. J.2022301536510.1016/j.jsps.2021.12.018 35241963
    [Google Scholar]
  180. BoseS. Michniak-KohnB. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin.Eur. J. Pharm. Sci.201348344245210.1016/j.ejps.2012.12.005 23246734
    [Google Scholar]
  181. GeethaT. KapilaM. PrakashO. DeolP.K. KakkarV. KaurI.P. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.J. Drug Target.201523215916910.3109/1061186X.2014.965717 25268273
    [Google Scholar]
  182. JenningV. GyslerA. Schäfer-KortingM. GohlaS.H. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin.Eur. J. Pharm. Biopharm.200049321121810.1016/S0939‑6411(99)00075‑2 10799811
    [Google Scholar]
  183. MitriK. ShegokarR. GohlaS. AnselmiC. MüllerR.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance.Int. J. Pharm.20114141-226727510.1016/j.ijpharm.2011.05.008 21596122
    [Google Scholar]
  184. GokceE. KorkmazE. DelleraE. SandriG. BonferoniM.C. OzerO. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: Evaluation of antioxidant potential for dermal applications.Int. J. Nanomedicine201271841185010.2147/IJN.S29710 22605933
    [Google Scholar]
  185. LinY.K. Al-SuwayehS.A. LeuY.L. ShenF.M. FangJ.Y. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata.Pharm. Res.201330243544610.1007/s11095‑012‑0888‑0 23070602
    [Google Scholar]
  186. CamposV.E.B. Ricci-JúniorE. MansurC.R.E. Nanoemulsions as delivery systems for lipophilic drugs.J. Nanosci. Nanotechnol.20121232881289010.1166/jnn.2012.5690 22755138
    [Google Scholar]
  187. JaiswalM DudheR SharmaPK Nanoemulsion: An advanced mode of drug delivery system.3 Biotech.201552123127
    [Google Scholar]
  188. KumarM. BishnoiR.S. ShuklaA.K. JainC.P. Techniques for formulation of nanoemulsion drug delivery system: A review.Prev. Nutr. Food Sci.201924322523410.3746/pnf.2019.24.3.225 31608247
    [Google Scholar]
  189. ZorziG.K. CaregnatoF. MoreiraJ.C.F. TeixeiraH.F. CarvalhoE.L.S. Antioxidant effect of nanoemulsions containing extract of achyrocline satureioides (Lam) D.C.-Asteraceae.AAPS PharmSciTech201617484485010.1208/s12249‑015‑0408‑8 26361953
    [Google Scholar]
  190. BrownlowB. NagarajV.J. NayelA. JoshiM. ElbayoumiT. Development and in vitro evaluation of vitamin E-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against UVB-induced skin damage.J. Pharm. Sci.2015104103510352310.1002/jps.24547 26108889
    [Google Scholar]
  191. TakahashiM. KitamotoD. AsikinY. TakaraK. WadaK. Liposomes encapsulating Aloe vera leaf gel extract significantly enhance proliferation and collagen synthesis in human skin cell lines.J. Oleo Sci.2009581264365010.5650/jos.58.643 19915322
    [Google Scholar]
  192. PereiraF. BaptistaR. LadeirasD. MadureiraA.M. TeixeiraG. RosadoC. FernandesA.S. AscensãoL. SilvaC.O. ReisC.P. RijoP. Production and characterization of nanoparticles containing methanol extracts of Portuguese Lavenders.Measurement20157417017710.1016/j.measurement.2015.07.029
    [Google Scholar]
  193. Chen-yuG. Chun-fenY. Qi-luL. QiT. Yan-weiX. Wei-naL. Guang-xiZ. Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery.Int. J. Pharm.20124301-229229810.1016/j.ijpharm.2012.03.042 22486962
    [Google Scholar]
  194. ShenC.Y. DaiL. ShenB.D. ZhouX. BaiJ.X. XuH. LvQ.Y. HanJ. YuanH.L. Nanostructured lipid carrier based topical gel of Ganoderma Triterpenoids for frostbite treatment.Chin. J. Nat. Med.201513645446010.1016/S1875‑5364(15)30039‑X 26073342
    [Google Scholar]
  195. FriedrichRB KannB CoradiniK OfferhausHL BeckRCR WindbergsM Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin.J Nanobiotechnol2011493
    [Google Scholar]
  196. LuW.C. ChiangB.H. HuangD.W. LiP.H. Skin permeation of d-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.Ultrason. Sonochem.201421282683210.1016/j.ultsonch.2013.10.013 24183592
    [Google Scholar]
  197. AblaM.J. BangaA.K. Formulation of tocopherol nanocarriers and in vitro delivery into human skin.Int. J. Cosmet. Sci.201436323924610.1111/ics.12119 24697812
    [Google Scholar]
  198. HwangS.L. KimJ.C. In vivo hair growth promotion effects of cosmetic preparations containing hinokitiol-loaded poly(ε -caprolacton) nanocapsules.J. Microencapsul.200825535135610.1080/02652040802000557 18465297
    [Google Scholar]
  199. SarafS. JeswaniG. KaurC.D. SarafS. Development of novel cosmetic cream with curcuma longa extract loaded transfersomes for anti-wrinkle effect.Afr. J. Pharm. Pharmacol.20115810541062
    [Google Scholar]
  200. KumarN. TharathaS. ChaiyasutC. Development and validation of simple isocratic high performance liquid chromatography-ultraviolet (HPLC-UV) method for determination of safflower yellow in Carthamus tinctorius (L.)-loaded nanostructured lipid carriers (NLC).Afr. J. Pharm. Pharmacol.201152023352341
    [Google Scholar]
  201. Abd-ElghanyA.A. MohamadE.A. Chitosan-coated niosomes loaded with ellagic acid present antiaging activity in a skin cell line.ACS Omega2023819166201662910.1021/acsomega.2c07254 37214686
    [Google Scholar]
  202. JoshiH. HegdeA.R. ShettyP.K. GollavilliH. ManaguliR.S. KalthurG. MutalikS. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations.Photodermatol. Photoimmunol. Photomed.2018341698110.1111/phpp.12335 28767160
    [Google Scholar]
  203. GollavilliH. HegdeA.R. ManaguliR.S. BhaskarK.V. DengaleS.J. ReddyM.S. KalthurG. MutalikS. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation.Colloids Surf. B Biointerfaces202019311112210.1016/j.colsurfb.2020.111122 32498002
    [Google Scholar]
  204. ButnariuMV GiuchiciCV The use of some nanoemulsions based on aqueous propolis and lycopene extract in the skin’s protective mechanisms against UVA radiation.J Nanobiotechnol2011493
    [Google Scholar]
  205. MitriK. ShegokarR. GohlaS. AnselmiC. MüllerR.H. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery.Int. J. Pharm.2011420114114610.1016/j.ijpharm.2011.08.026 21884768
    [Google Scholar]
  206. SuwannateepN. WanichwecharungruangS. HaagS.F. DevahastinS. GrothN. FluhrJ.W. LademannJ. MeinkeM.C. Encapsulated curcumin results in prolonged curcumin activity in vitro and radical scavenging activity ex vivo on skin after UVB-irradiation.Eur. J. Pharm. Biopharm.201282348549010.1016/j.ejpb.2012.08.010 22954772
    [Google Scholar]
  207. MohamadE.A. AlyA.A. KhalafA.A. AhmedM.I. KamelR.M. AbdelnabyS.M. AbdelzaherY.H. SedrakM.G. MousaS.A. Evaluation of natural bioactive-derived punicalagin niosomes in skin- aging processes accelerated by oxidant and ultraviolet radiation.Drug Des. Devel. Ther.2021153151316210.2147/DDDT.S316247 34321865
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797312386240722044340
Loading
/content/journals/cosci/10.2174/0126667797312386240722044340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test