Current Organic Synthesis - Volume 16, Issue 8, 2019
Volume 16, Issue 8, 2019
-
-
Structure-Bioactivity Relationship Study of Xanthene Derivatives: A Brief Review
Authors: Aref G. Ghahsare, Zahra S. Nazifi and Seyed M.R. NazifiOver the last decades, several heterocyclic derivatives compounds have been synthesized or extracted from natural resources and have been tested for their pharmaceutical activities. Xanthene is one of these heterocyclic derivatives. These compounds consist of an oxygen-containing central heterocyclic structure with two more cyclic structures fused to the central cyclic compound. It has been shown that xanthane derivatives are bioactive compounds with diverse activities such as anti-bacterial, anti-fungal, anti-cancer, and anti-inflammatory as well as therapeutic effects on diabetes and Alzheimer. The anti-cancer activity of such compounds has been one of the main research fields in pharmaceutical chemistry. Due to this diverse biological activity, xanthene core derivatives are still an attractive research field for both academia and industry. This review addresses the current finding on the biological activities of xanthene derivatives and discussed in detail some aspects of their structure-activity relationship (SAR).
-
-
-
Contemporary Progress in the Synthetic Strategies of Imidazole and its Biological Activities
Authors: Jay Soni, Ayushi Sethiya, Nusrat Sahiba, Dinesh K. Agarwal and Shikha AgarwalHeterocyclic compounds are pervasive in many areas of life and one of the heterocycles, imidazole is a unique heterocyclic five-membered aromatic compound having two sp2 hybridized nitrogen atoms. Its integral name is 1, 3 diazole and previously, it was known as glyoxalin. This moiety has achieved a considerable place among scientists in recent years by reason of its divergent synthetic strategies and uncommon biological and pharmacological activities, for example, anti-convulsant, anti-microbial, anti-cancer, anti-inflammatory, anti-tumor, anti-viral, anti-ulcer, analgesic, etc. Due to distinct therapeutic actions, it is still an engrossed area of research. Researchers currently are inventing new greener methods to synthesize its derivatives and to improve its pharmacological activities. The purpose of this review is to study the literature that can help researchers to explore this area, its prevailing program for synthesis in environmentally friendly conditions and biological profile throughout past decades.
-
-
-
Application of Palladium-Catalyzed Cross-Coupling Reactions in Organic Synthesis
Authors: Shalu Sain, Sonika Jain, Manish Srivastava, Rajendra Vishwakarma and Jaya DwivediPalladium-catalyzed cross-coupling reactions have gained a continuously growing interest of synthetic organic chemists. The present review gives a brief account of applications of the palladium-catalyzed cross-coupling reactions in comprehensive synthesis, viz., the Heck, Stille, Suzuki–Miyaura, Negishi, Sonogashira, Buchwald–Hartwig, Ullmann and the Oxidative, decarboxylative cross-coupling reactions, with particular emphasis on the synthesis of heterocyclic compounds.
-
-
-
Unexpected Reactions of Terminal Alkynes in Targeted “Click Chemistry” Copper-catalyzed Azide-alkyne Cycloadditions
Authors: Tammar H. Ali, Thorsten Heidelberg, Rusnah S.D. Hussen and Hairul A. TajuddinBackground: High efficiency in terms of reaction yield and purity has led to the extensive utilization of copper-catalyzed azide-alkyne cycloaddition (CuAAC) in various fields of chemistry. Its compatibility with low molecular weight alcohols promotes the application in surfactant synthesis to tackle the miscibility constraints of the reactants. Objective: For the tuning of surfactant properties, double click coupling of the antipode precursors was attempted. Failure of the CuAAC to provide the targeted product in combination with unexpected reaction outputs led to an investigation of the side reaction. Methods: The CuAAC-based coupling of sugar azide with propargyl building block in the presence of copper- (I) catalyst exclusively led to the mono-coupling product in a respectable yield of almost 80%. Besides the unexpected incomplete conversion, the loss of the remaining propargyl group, as indicated by both NMR and MS. On the other hand, application of substantial amounts of CuSO4 under reducing conditions in refluxing toluene/water furnished the alkyne dimer in a moderate yield of 43%, while no change of azide compound was noticed. Results: The Cu(I)-catalyst applied for azide-alkyne cycloadditions enables the homo-coupling of certain terminal alkynes at a higher temperature. Moreover, aromatic propargyl ethers may be cleaved to furnish the corresponding phenol. The copper-catalyzed coupling appeared highly sensitive towards the alkyne compound. Only selected derivatives of propargyl alcohol were successfully dimerized. Conclusions: The observed failure of the Huisgen reaction for the synthesis of sugar-based surfactants may indicate non-recognized constrains of the reaction, which could affect its wide application in bioconjugation. The temperature requirement for the alternative dimerization of terminal alkynes renders this side reaction nonrelevant for typical click couplings, while narrow substrate diversity and moderate yield limit its synthetic application.
-
-
-
Z-Acrylonitrile Derivatives: Improved Synthesis, X-ray Structure, and Interaction with Human Serum Albumin
Authors: Mehtab Parveen, Afroz Aslam, Shahab A.A. Nami and Musheer AhmadAims and Objective: In the synthesis of heterocyclic compounds, acrylonitrile derivatives are the most important and appropriate precursors. These compounds are the most important intermediates and subunits for the enhancement of molecules having pharmaceutical or biological interests. Nitrogen-containing compounds have received extensive consideration in the literature over the years. Materials and Methods: A facile, economic and efficient method has been developed for the synthesis of acrylonitrile derivatives using p-nitrophenylacetonitrile and aromatic/heterocyclic aldehydes in the presence of zinc chloride at room temperature. Spectroscopic data were obtained using the following instruments: Fourier transform infrared spectra (KBr discs, 4000-400 cm-1) by Shimadzu IR-408 Perkin-Elmer 1800 instrument; 1H NMR and 13C NMR spectra by Bruker Avance-II 400 MHz using DMSO-d6 as a solvent containing TMS as the internal standard. Results: To continue our ongoing studies to synthesize heterocyclic and pharmaceutical compounds by mild, facile and efficient protocols, herein we wish to report our experimental results on the synthesis of acrylonitrile derivatives, using various aromatic/heterocyclic aldehydes and p-nitrophenylacetonitrile in the presence of zinc chloride in ethanolic media at room temperature. Some of the new compounds were tested for their human serum albumin activity (HSA) while a study of interaction with HSA protein was performed for compounds 3a and 3b. The results show that compound 3b binds tightly to HSA as compared to compound 3a. Conclusion: It can be concluded that acrylonitrile derivatives can be synthesized by an efficient method via the reaction of p-nitrophenylacetonitrile with aromatic/heterocyclic aldehydes by the use of zinc chloride as an effective solid catalyst. The remarkable features of this procedure include excellent yields (90-95%), short reaction period (30 min.), moderate reaction environment, easy workup procedure and managing of the catalyst. This method may find a wide significance in organic synthesis for the synthesis of the Z-acrylonitrile.
-
-
-
A Facile One-Pot Synthesis of 3-Methylbenzisoxazoles via a Key Intermediate of ortho-Ethoxyvinyl Nitroaryls by Domino Rearrangement and their Anti-Inflammatory Activity
Background: Recently, there has been a lot of scientific interest in exploring the syntheses of oxygen and nitrogen-containing heterocyclic compounds due to their pharmacological activities. In addition, benzisoxazoles play a very important role in organic synthesis as key intermediates. Objective: In this paper, we focused on developing a novel synthetic route for biologically active arylisoxazoles under normal conditions, and simplified it to get high purities and yields, and also reported their anti-inflammatory activities. Methods: An efficient and simple method has been explored for the synthesis of novel 3-methyl arylisoxazoles from o-nitroaryl halides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via Domino rearrangement in one pot synthesis. Results: We synthesized novel 3-methylarylisoxazoles from o-nitroarylhalides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via domino rearrangement. In this reduction, nitro group and ethoxy vinyl group change to the functional acyl ketones, followed by hetero cyclization. Here, the reaction proceeds without the isolation of intermediates like 2-acylnitroarenes and 2- acylanilines. All the synthesized compounds were completely characterized by the NMR and mass spectra. The compounds were also explored for their anti-inflammatory activity by carrageenan-induced inflammation in the albino rats (150-200 g) of either sex used in this entire study with the use of Diclofenac sodium as the standard drug. The initial evaluations identified leading targets with good to moderate anti-inflammatory activity. Conclusion: A simple, one-pot and convenient method has been explored for the synthesis of novel 3- methylarylisoxazoles with high purity and reaction yields. All the compounds 3a, 3c, 3d, 3f, 3g and 3h exhibited 51-64% anti-inflammatory activities.
-
-
-
Identification of Novel Sesamol Dimers with Unusual Methylenedioxy Ring-Opening Skeleton and Evaluation of Their Antioxidant and Cytotoxic Activities
Background: Sesamol is a widely used antioxidant for the food and pharmaceutical industries. The oxidation products of this compound may be accumulated in foods or ingested. Little is known about its effect on human health. Objective: It is of great interest to identify the oxidation products of sesamol that may be beneficial to humans. This study was undertaken to identify the oxidation products of sesamol and investigate their antioxidant and cytotoxic activities. Materials and Methods: Using the ferricyanide oxidation approach, four oxidation products of sesamol (2, 3, 20 & 21) have been identified. Structural elucidation of these compounds was established on the basis of their detailed NMR spectroscopic analysis, mass spectrometry and x-ray crystallography. Additionally, a formation mechanism of compound 20 was proposed based on high-resolution mass spectrometry-fragmentation method. The antioxidant activities of these compounds were determined by the DPPH, FRAP, and ABTS assays. The in vitro antiproliferative activity of these compounds was evaluated against a panel of human cancer cell lines as well as non-cancerous cells. Results: Two oxidation products of sesamol were found to contain an unusual methylenedioxy ring-opening skeleton, as evidenced by spectroscopic and x-ray crystallographic data. Among all compounds, 20 displayed impressive antiproliferative activities against a panel of human cancer cell lines yet remained non-toxic to noncancerous cells. The antioxidant activities of compound 20 are significantly weaker than sesamol as determined by the DPPH, FRAP, and ABTS assays. Conclusion: The oxidation products of sesamol could be a valuable source of bioactive molecules. Compound 20 may be used as a potential lead molecule for cancer studies.
-
-
-
The Syntheses, Characterization and Crystal Structures of a Series of Heterocyclic β-Diketones and Their Isoxazole Compounds
Authors: Biyun Su, Yifan Hou, Li Wang, Xiaoteng Li, Dandan Pan, Tingyu Yan, Ao Zhang, Faida Paison and Liqing DingBackground: In the field of coordination chemistry, the introduction of heterocyclic substituents into the structure of β-diketone enables ligand to produce multiple coordination sites. The adoption of small steric oxime group into the structure of heterocyclic β-diketone by Schiff-base condensation will further increase coordination sites and facilitate the generation of polynuclear structures. Objective: A series of β-diketones (2a-2c) containing different heterocycles such as pyridine, thiophene and furan and their corresponding isoxazole compounds (3a-3c) were synthesized. Materials and Methods: The Claisen condensations were investigated in a solvent-free rheological phase system at room temperature to obtain heterocyclic β-diketones 2a-2c, which further reacted with hydroxylamine hydrochloride to obtain heterocyclic isoxazoles 3a-3c. All these compounds were well characterized by EA, IR, 1H NMR and X-ray crystal diffraction to confirm the structures. Synthetic mechanisms of compounds and the effects of different heterocycles on reactivity were discussed deeply. Results: 1H NMR indicated that these β-diketones do not exist as a total diketonic form but an equilibration between diketone and enol forms in CDCl3 solvent, in which the enol form accounts for 98.0% in 2a, 94.3% in 2b, 95.5% in 2c. While the crystal structures of 2a-2c showed that the reaction allows to isolate diketones in solid state. Crystal structures of 3a-3c showed that the neutral β-ketone oximes resonate and cyclize to form the target heterocyclic isoxazoles. Conclusion: SN1 nucleophilic substitution mechanism of Claisen ketoester condensation was proposed for the syntheses of 2a-2c, and SN1 single molecule nucleophilic substitution reaction mechanism was put forward for 3a-3c.
-
-
-
Solvent-mediated Highly Efficient Synthesis of [1,2,4]Triazolo/benzimidazoloquinazolinone Derivatives
Authors: Fatemeh Malamiri, Samad Khaksar, Rashid Badri and Elham TahanpesarObjective: An efficient and catalyst-free procedure for the synthesis of [1,2,4]triazolo/benzimidazolo quinazolinones has been developed in 2,2,2-trifluoroethanol or deep eutectic solvent(DESs) as a clean reaction media. Methods: All of the obtained products are known compounds and identified by IR, 1HNMR,13CNMR, and melting points. Result: Various products were obtained in good to excellent yields under reaction conditions. Conclusion: We have efficiently developed a practical and catalyst-free approach for the synthesis of [1,2,4]triazolo/benzimidazolo quinazolinones employing TFE as a clean and reusable media.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month
