Skip to content
2000
image of Antiphytopathogenic Effects and the Preliminary Mechanisms of 5-nitro-8-hydroxyquinoline Derivatives

Abstract

Introduction

8-Hydroxyquinoline derivatives are compounds isolated from plants that possess a wide range of pharmacological activities. In our previous work, a series of novel 8-hydroxyquinoline derivatives was synthesized. Among them, the compound , 7-((4-(o-tolyl) piperazine-1-yl) methyl)-5-nitroquinolin-8-ol, demonstrated broad-spectrum antifungal activity against five plant pathogenic fungi with EC50 ranging from 4.69 to 12.61 μg/mL.

Methods

This investigation principally focused on determining the potential mechanisms of compound using ) as a model.

Results

The electron microscope observations revealed that after being treated with compound at 5 μg/mL, the mycelia became obviously curved, collapsed, and its integrity of the cell membrane was eventually destroyed.

Discussion

The compound influenced the production of reactive oxygen species, loss of mitochondrial membrane potential, and nuclear morphology. In addition, compound inhibited the enzyme activities related to mitochondrial function.

Conclusion

These findings will deepen our insights into the mechanisms of action of 8-hydroxyquinoline against and open new directions for the future development of effective antifungal agents to control phytopathogenic fungi.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794397332250925103433
2025-10-17
2025-12-09
Loading full text...

Full text loading...

References

  1. Lee Y.S. Kim J. Shin S.C. Lee S.G. Park I.K. Antifungal activity of Myrtaceae essential oils and their components against three phytopathogenic fungi. Flavour Fragr J. 2008 23 23 10.1002/ffj.1850
    [Google Scholar]
  2. Pinna C. Nespoli L. Brioschi G. Kunova A. Cortesi P. Martino P.A. Molinari F. Musso L. Dallavalle S. Contente M.L. Pinto A. Biocatalyzed synthesis of benzoyl and cinnamoylamides inspired by rice phytoalexins. ACS Agric. Sci Technol. 2025 5 4 461 467 10.1021/acsagscitech.4c00380 40276682
    [Google Scholar]
  3. Xie Q. Peng F. Wang X. Du B. Yang Y. Chestnut flower extract as a natural inhibitor of Fusarium graminearum: Antifungal activity and mechanisms. Pest Manag. Sci. 2025 81 6 3358 3369 10.1002/ps.8708 39925334
    [Google Scholar]
  4. Meena K.R. Kanwar S.S. Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. BioMed Res. Int. 2015 2015 1 9 10.1155/2015/473050 25632392
    [Google Scholar]
  5. Turella S. He C. Zhao L. Banerjee S. Plouhinec L. Assiah Yao R. Nørgaard Kejlstrup M.C. Grisel S. So Y. Annic B. Fanuel M. Haddad Momeni M. Bissaro B. Meier S. Morth J.P. Dong S. Berrin J.G. Abou Hachem M. Enzymatic oxidation of galacturonides from pectin breakdown contributes to stealth infection by Oomycota phytopathogens. Nat. Commun. 2025 16 1 3467 10.1038/s41467‑025‑58668‑8 40216756
    [Google Scholar]
  6. Nurrahma A.H.I. Harsonowati W. Putri H.H. Iqbal R. Current research trends in endophytic fungi modulating plant adaptation to climate change-associated soil salinity stress. J. Soil Sci. Plant Nutr. 2024 24 4 6446 6466 10.1007/s42729‑024‑01980‑x
    [Google Scholar]
  7. Dean R. Van Kan J.A.L. Pretorius Z.A. Hammond-Kosack K. Di Pietro A. Spanu P.D. Rudd J.J. Dickman M. Kahmann R. Ellis J. Foster G.D. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012 13 4 414 430 10.1111/j.1364‑3703.2011.00783.x 22471698
    [Google Scholar]
  8. Wu Y. Wang J. Wang S. Ke Y. Ren T. Wang Y. Mechanism analysis of amphotericin B controlling postharvest gray mold in table grapes. Foods 2025 14 7 1260 10.3390/foods14071260 40238543
    [Google Scholar]
  9. Plesken C. Pattar P. Reiss B. Noor Z.N. Zhang L. Klug K. Huettel B. Hahn M. Genetic diversity of Botrytis cinerea revealed by multilocus sequencing, and identification of B. cinerea populations showing genetic isolation and distinct host adaptation. Front Plant. Sci. 2021 12 663027 10.3389/fpls.2021.663027 34025700
    [Google Scholar]
  10. Jernej L. Frost D.S.M. Walker A.S. Liu J. Fefer M. Plaetzer K. Photodynamic inactivation in agriculture: Combating fungal phytopathogens resistant to conventional treatment. Photochem. Photobiol. Sci. 2024 23 6 1117 1128 10.1007/s43630‑024‑00579‑6 38750328
    [Google Scholar]
  11. Yang G.Z. Zhu J.K. Yin X.D. Yan Y.F. Wang Y.L. Shang X.F. Liu Y.Q. Zhao Z.M. Peng J.W. Liu H. Design, synthesis, and antifungal evaluation of novel quinoline derivatives inspired from natural quinine alkaloids. J. Agric. Food Chem. 2019 67 41 11340 11353 10.1021/acs.jafc.9b04224 31532201
    [Google Scholar]
  12. Falahzadah M.H. Karimi J. Gaugler R. Biological control chance and limitation within integrated pest management program in Afghanistan. Egypt. J. Biol. Pest Control 2020 30 1 86 10.1186/s41938‑020‑00264‑7
    [Google Scholar]
  13. Stejskal V. Vendl T. Aulicky R. Athanassiou C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects 2021 12 7 590 10.3390/insects12070590 34209742
    [Google Scholar]
  14. Bueno A.F. Sutil W.P. Jahnke S.M. Carvalho G.A. Cingolani M.F. Colmenarez Y.C. Corniani N. Biological control as part of the soybean integrated pest Management (IPM): Potential and challenges. Agronomy 2023 13 10 2532 10.3390/agronomy13102532
    [Google Scholar]
  15. Harush A. Quinn E. Trostanetsky A. Rapaport A. Kostyukovsky M. Gottlieb D. Integrated pest management for stored grain: Potential natural biological control by a parasitoid wasp community. Insects 2021 12 11 1038 10.3390/insects12111038 34821838
    [Google Scholar]
  16. Makwarela T.G. Seoraj-Pillai N. Nangammbi T.C. Tick control strategies: Critical insights into chemical, biological, physical, and integrated approaches for effective hard tick management. Vet. Sci. 2025 12 2 114 10.3390/vetsci12020114 40005873
    [Google Scholar]
  17. Bhattacharyya P.N. Sarma B. Sarmah S.R. Nath B.C. Borchetia S. Rahman A. Madhab M. Bhattacharyya L.H. Handique C. Mazumder M.K. Bhattacharyya A. Entomopathogen-based biological control of looper pests (old looper, Biston (= Buzura) suppressaria and emerging looper, Hyposidra Talaca): an in vitro sustainable approach for tea pest management. Int. J. Trop. Insect Sci. 2024 44 4 1713 1727 10.1007/s42690‑024‑01268‑8
    [Google Scholar]
  18. Li Y. Aioub A.A.A. Lv B. Hu Z. Wu W. Antifungal activity of pregnane glycosides isolated from Periploca sepium root barks against various phytopathogenic fungi. Ind. Crops Prod. 2019 132 150 155 10.1016/j.indcrop.2019.02.009
    [Google Scholar]
  19. Rbaa M. Oubihi A. Anouar E. Ouhssine M. Anouar E.H. Ouhssine M. Almalki F. Hadda T.B. Zarrouk A. Lakhrissi B. Synthesis of new heterocyclic systems oxazino derivatives of 8-Hydroxyquinoline: Drug design and POM analyses of substituent effects on their potential antibacterial properties. Chem. Date Col 2019 24 100306
    [Google Scholar]
  20. Martínez-Cruz J.M. Polonio Á. Zanni R. Romero D. Gálvez J. Fernández-Ortuño D. Pérez-García A. Chitin deacetylase, a novel target for the design of agricultural fungicides. J. Fungi 2021 7 12 1009 10.3390/jof7121009 34946992
    [Google Scholar]
  21. Ngece K. Ntondini T.L. Khwaza V. Paca A.M. Aderibigbe B.A. Polyene-based derivatives with antifungal activities. Pharmaceutics 2024 16 8 1065 10.3390/pharmaceutics16081065 39204411
    [Google Scholar]
  22. Wang Z.J. Gao Y. Hou Y.L. Zhang C. Yu S.J. Bian Q. Li Z.M. Zhao W.G. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. Eur. J. Med. Chem. 2014 86 87 94 10.1016/j.ejmech.2014.08.029 25147150
    [Google Scholar]
  23. Clements J. Schoville S. Clements A. Amezian D. Davis T. Sanchez-Sedillo B. Bradfield C. Huseth A.S. Groves R.L. Agricultural fungicides inadvertently influence the fitness of Colorado potato beetles, Leptinotarsa decemlineata and their susceptibility to insecticides. Sci. Rep. 2018 8 1 13282 10.1038/s41598‑018‑31663‑4 30185821
    [Google Scholar]
  24. Jayawardana M.A. Fernando W.G.D. The mechanisms of developing fungicide resistance in Fusarium graminearum Causing Fusarium head blight and fungicide resistance management. Pathogens 2024 13 11 1012 10.3390/pathogens13111012 39599565
    [Google Scholar]
  25. Scholz R. Fernández Gamarra M.A. Vargas M.J. Yamanaka N. Yearly changes in virulence of Phakopsora pachyrhizi isolates in Paraguay. Trop. Plant Pathol. 2024 49 3 413 420 10.1007/s40858‑024‑00639‑3
    [Google Scholar]
  26. Nanni I.M. Oggiano I. Laricchia M. Cempini M. Collina M. Monitoring and tracking changes in sensitivity to zoxamide fungicide in Plasmopara viticola in Italy. J. Plant Dis. Prot. 2024 131 4 1211 1216 10.1007/s41348‑024‑00947‑5
    [Google Scholar]
  27. Spring O. Gomez-Zeledon J. Hadziabdic D. Trigiano R.N. Thines M. Lebeda A. Biological characteristics and assessment of virulence diversity in pathosystems of economically important biotrophic oomycetes. Crit. Rev. Plant Sci. 2018 37 6 439 495 10.1080/07352689.2018.1530848
    [Google Scholar]
  28. Clements J. Schoville S. Clements A. Amezian D. Davis T. Sanchez-Sedillo B. Bradfield C. Huseth A.S. Groves R.L. Agricultural fungicides inadvertently influence the fitness of Colorado potato beetles, Leptinotarsa decemlineata, and their susceptibility to insecticides. Sci. Rep. 2018 8 1 13282 10.1038/s41598‑018‑31663‑4 30185821
    [Google Scholar]
  29. Clare S.L. Problems with pesticides in the landscape resurgence, residue and resistance. BIOS 1995 66 39 44
    [Google Scholar]
  30. Ul Hassan Z. Oufensou S. Zeidan R. Migheli Q. Jaoua S. Microbial volatilome in food safety. Current status and perspectives in the biocontrol of mycotoxigenic fungi and their metabolites. Biocontrol Sci. Technol. 2023 33 6 499 538 10.1080/09583157.2023.2205616
    [Google Scholar]
  31. Habschied K. Krstanović V. Zdunić Z. Babić J. Mastanjević K. Šarić G.K. Mycotoxins Biocontrol methods for healthier crops and stored products. J. Fungi 2021 7 5 348 10.3390/jof7050348 33946920
    [Google Scholar]
  32. Dozio D. Sacchi F. Pinto A. Dallavalle S. Annunziata F. Princiotto S. Natural antifungal alkaloids for crop protection: An overview of the latest synthetic approaches. Pharmaceuticals 2025 18 4 589 10.3390/ph18040589 40284025
    [Google Scholar]
  33. Le V.G. Nguyen M.K. Nguyen H.L. Thai, V-A.; Le, V-R.; Vu, Q.M.; Asaithambi, P.; Chang, S.W.; Nguyen, D.D. Ecotoxicological response of algae to contaminants in aquatic environments: A review. Environ. Chem. Lett. 2024 22 2 919 939 10.1007/s10311‑023‑01680‑5
    [Google Scholar]
  34. Fatahpour M. Lashkari M. Hazeri N. Sadeh F.N. Maghsoodlou M.T. Stereoselective synthesis of polysubstituted hydroquinolines in a one-pot, pseudo-eight-component strategy. Org. Prep. Proced. Int. 2019 51 6 576 582 10.1080/00304948.2019.1677992
    [Google Scholar]
  35. Annunziata F. Pinna C. Dallavalle S. Tamborini L. Pinto A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci. 2020 21 13 4618 10.3390/ijms21134618 32610556
    [Google Scholar]
  36. Weyesa A. Mulugeta E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review. RSC Advances 2020 10 35 20784 20793 10.1039/D0RA03763J 35517753
    [Google Scholar]
  37. Volpi G. Laurenti E. Rabezzana R. Imidazopyridine family: Versatile and promising heterocyclic skeletons for different applications. Molecules 2024 29 11 2668 10.3390/molecules29112668 38893542
    [Google Scholar]
  38. Asif M. Alghamdi S. An overview on biological importance of pyrrolone and pyrrolidinone derivatives as promising scaffolds. Russ. J. Org. Chem. 2021 57 10 1700 1718 10.1134/S1070428021100201
    [Google Scholar]
  39. Prachayasittikul V. Prachayasittikul V. Prachayasittikul S. Ruchirawat S. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther. 2013 7 1157 1178 10.2147/DDDT.S49763 24115839
    [Google Scholar]
  40. Song Y. Xu H. Chen W. Zhan P. Liu X. 8-Hydroxyquinoline: A privileged structure with a broad-ranging pharmacological potential. MedChemComm 2015 6 1 61 74 10.1039/C4MD00284A
    [Google Scholar]
  41. Fechner U. de Graaf C. Torda A.E. Güssregen S. Evers A. Matter H. Hessler G. Richmond N.J. Schmidtke P. Segler M.H.S. Waller M.P. Pleik S. Shea J.E. Levine Z. Mullen R. van den Broek K. Epple M. Kuhn H. Truszkowski A. Zielesny A. Fraaije J. Gracia R.S. Kast S.M. Bulusu K.C. Bender A. Yosipof A. Nahum O. Senderowitz H. Krotzky T. Schulz R. Wolber G. Bietz S. Rarey M. Zimmermann M.O. Lange A. Ruff M. Heidrich J. Onlia I. Exner T.E. Boeckler F.M. Bermudez M. Firaha D.S. Hollóczki O. Kirchner B. Tautermann C.S. Volkamer A. Eid S. Turk S. Rippmann F. Fulle S. Saleh N. Saladino G. Gervasio F.L. Haensele E. Banting L. Whitley D.C. Oliveira Santos J.S. Bureau R. Clark T. Sandmann A. Lanig H. Kibies P. Heil J. Hoffgaard F. Frach R. Engel J. Smith S. Basu D. Rauh D. Kohlbacher O. Boeckler F.M. Essex J.W. Bodnarchuk M.S. Ross G.A. Finkelmann A.R. Göller A.H. Schneider G. Husch T. Schütter C. Balducci A. Korth M. Ntie-Kang F. Günther S. Sippl W. Mbaze L.M. Ntie-Kang F. Simoben C.V. Lifongo L.L. Ntie-Kang F. Judson P. Barilla J. Lokajíček M.V. Pisaková H. Simr P. Kireeva N. Petrov A. Ostroumov D. Solovev V.P. Pervov V.S. Friedrich N.O. Sommer K. Rarey M. Kirchmair J. Proschak E. Weber J. Moser D. Kalinowski L. Achenbach J. Mackey M. Cheeseright T. Renner G. Renner G. Schmidt T.C. Schram J. Egelkraut-Holtus M. van Oeyen A. Kalliokoski T. Fourches D. Ibezim A. Mbah C.J. Adikwu U.M. Nwodo N.J. Steudle A. Masek B.B. Nagy S. Baker D. Soltanshahi F. Dorfman R. Dubrucq K. Patel H. Koch O. Mrugalla F. Kast S.M. Ain Q.U. Fuchs J.E. Owen R.M. Omoto K. Torella R. Pryde D.C. Glen R. Bender A. Hošek P. Spiwok V. Mervin L.H. Barrett I. Firth M. Murray D.C. McWilliams L. Cao Q. Engkvist O. Warszycki D. Śmieja M. Bojarski A.J. Aniceto N. Freitas A. Ghafourian T. Herrmann G. Eigner-Pitto V. Naß A. Kurczab R. Bojarski A.J. Lange A. Günther M.B. Hennig S. Büttner F.M. Schall C. Sievers-Engler A. Ansideri F. Koch P. Stehle T. Laufer S. Böckler F.M. Zdrazil B. Montanari F. Ecker G.F. Grebner C. Hogner A. Ulander J. Edman K. Guallar V. Tyrchan C. Ulander J. Tyrchan C. Klute W. Bergström F. Kramer C. Nguyen Q.D. Frach R. Kibies P. Strohfeldt S. Böttcher S. Pongratz T. Horinek D. Kast S.M. Rupp B. Al-Yamori R. Lisurek M. Kühne R. Furtado F. van den Broek K. Wessjohann L. Mathea M. Baumann K. Mohamad-Zobir S.Z. Fu X. Fan T.P. Bender A. Kuhn M.A. Sotriffer C.A. Zoufir A. Li X. Mervin L. Berg E. Polokoff M. Ihlenfeldt W.D. Ihlenfeldt W.D. Pretzel J. Alhalabi Z. Fraczkiewicz R. Waldman M. Clark R.D. Shaikh N. Garg P. Kos A. Himmler H.J. Sandmann A. Jardin C. Sticht H. Steinbrecher T.B. Dahlgren M. Cappel D. Lin T. Wang L. Krilov G. Abel R. Friesner R. Sherman W. Pöhner I.A. Panecka J. Wade R.C. Bietz S. Schomburg K.T. Hilbig M. Rarey M. Jäger C. Wieczorek V. Westerhoff L.M. Borbulevych O.Y. Demuth H.U. Buchholz M. Schmidt D. Rickmeyer T. Krotzky T. Kolb P. Mittal S. Sánchez-García E. Nogueira M.S. Oliveira T.B. da Costa F.B. Schmidt T.J. 11th German Conference on Chemoinformatics (GCC 2015) J. Cheminform, 2016 8 S1 18.(Suppl. 1) 10.1186/s13321‑016‑0119‑5 29270804
    [Google Scholar]
  42. Kubanik M. Holtkamp H. Söhnel T. Jamieson S.M.F. Hartinger C.G. Impact of the halogen substitution pattern on the biological activity of organoruthenium 8-hydroxyquinoline anticancer agents. Organometallics 2015 34 23 5658 5668 10.1021/acs.organomet.5b00868
    [Google Scholar]
  43. Saadeh H. Sweidan K. Mubarak M. Recent Advances in the synthesis and biological activity of 8-hydroxyquinolines. Molecules 2020 25 18 4321 10.3390/molecules25184321 32967141
    [Google Scholar]
  44. Serrao E. Debnath B. Otake H. Kuang Y. Christ F. Debyser Z. Neamati N. Fragment-based discovery of 8-hydroxyquinoline inhibitors of the HIV-1 integrase-lens epithelium-derived growth factor/p75 (IN-LEDGF/p75) interaction. J. Med. Chem. 2013 56 6 2311 2322 10.1021/jm301632e 23445471
    [Google Scholar]
  45. Antinarelli L.M.R. Dias R.M.P. Souza I.O. Lima W.P. Gameiro J. da Silva A.D. Coimbra E.S. 4-Aminoquinoline derivatives as potential antileishmanial agents. Chem. Biol. Drug Des. 2015 86 4 704 714 10.1111/cbdd.12540 25682728
    [Google Scholar]
  46. Oliveri V. Lanza V. Milardi D. Viale M. Maric I. Sgarlata C. Vecchio G. Amino- and chloro-8-hydroxyquinolines and their copper complexes as proteasome inhibitors and antiproliferative agents. Metallomics 2017 9 10 1439 1446 10.1039/C7MT00156H 28932850
    [Google Scholar]
  47. Yin X.D. Sun Y. Lawoe R.K. Yang G.Z. Liu Y.Q. Shang X.F. Liu H. Yang Y.D. Zhu J.K. Huang X.L. Synthesis and anti-phytopathogenic activity of 8-hydroxyquinoline derivatives. RSC Advances 2019 9 52 30087 30099 10.1039/C9RA05712A 35530209
    [Google Scholar]
  48. Zhao Z. Shang X. Lawoe R.K. Liu Y. Zhou R. Sun Y. Yan Y. Li J. Yang G. Yang C. Anti-phytopathogenic activity and the possible mechanisms of action of isoquinoline alkaloid sanguinarine. Pestic. Biochem. Physiol. 2019 159 51 58 10.1016/j.pestbp.2019.05.015 31400784
    [Google Scholar]
  49. Luo X.F. Wang G.H. Ma L. Zhang Z.J. Zhang W. Zhang S.Y. Mou G.L. Li F.P. Liu Y.Q. Structural simplification of luotonin F: discovery of quinoline derivatives as novel antifungal agents for plant protection. J. Agric. Food Chem. 2025 73 7 3865 3873 10.1021/acs.jafc.4c08389 39903224
    [Google Scholar]
  50. Li H.X. Luo X.F. Deng P. Zhang S.Y. Zhou H. Ding Y.Y. Wang Y.R. Liu Y.Q. Zhang Z.J. Structural simplification of cryptolepine to obtain novel antifungal quinoline derivatives against phytopathogenic fungi. J. Agric. Food Chem. 2023 71 5 2301 2312 10.1021/acs.jafc.2c07575 36706432
    [Google Scholar]
  51. Du S.S. Luo X.F. An J.X. Zhang Z.J. Zhang S.Y. Wang Y.R. Ding Y.Y. Jiang W.Q. Zhang B.Q. Ma Y. Zhou Y. Hu Y.M. Liu Y.Q. Exploring boron applications in modern agriculture: Antifungal activities and mechanisms of phenylboronic acid derivatives. Pest Manag. Sci. 2023 79 8 2748 2761 10.1002/ps.7451 36914877
    [Google Scholar]
  52. Chen Y.J. Ma K.Y. Du S.S. Zhang Z.J. Wu T.L. Sun Y. Liu Y.Q. Yin X.D. Zhou R. Yan Y.F. Wang R.X. He Y.H. Chu Q.R. Tang C. Antifungal exploration of quinoline derivatives against phytopathogenic fungi inspired by quinine alkaloids. J. Agric. Food Chem. 2021 69 41 12156 12170 10.1021/acs.jafc.1c05677 34623798
    [Google Scholar]
  53. Chu Q.R. He Y.H. Tang C. Zhang Z.J. Luo X.F. Zhang B.Q. Zhou Y. Wu T.L. Du S.S. Yang C.J. Liu Y.Q. Design, synthesis, and antimicrobial activity of quindoline derivatives inspired by the cryptolepine alkaloid. J. Agric. Food Chem. 2022 70 9 2851 2863 10.1021/acs.jafc.1c07536 35226498
    [Google Scholar]
  54. Zhu J.K. Gao J.M. Yang C.J. Shang X.F. Zhao Z.M. Lawoe R.K. Zhou R. Sun Y. Yin X.D. Liu Y.Q. Design, synthesis, and antifungal evaluation of neocryptolepine derivatives against phytopathogenic fungi. J. Agric. Food Chem. 2020 68 8 2306 2315 10.1021/acs.jafc.9b06793 31995378
    [Google Scholar]
  55. Li J. Wang R. Sun Y. Zhu J. Hu G. Wang Y. Zhou R. Zhao Z. Liu Y. Peng J. Yan Y. Shang X. Design, synthesis and antifungal activity evaluation of isocryptolepine derivatives. Bioorg. Chem. 2019 92 103266 10.1016/j.bioorg.2019.103266 31542716
    [Google Scholar]
  56. Wang R.X. Du S.S. Wang J.R. Chu Q.R. Tang C. Zhang Z.J. Yang C.J. He Y.H. Li H.X. Wu T.L. Liu Y.Q. Design, synthesis, and antifungal evaluation of luotonin a derivatives against phytopathogenic fungi. J. Agric. Food Chem. 2021 69 48 14467 14477 10.1021/acs.jafc.1c04242 34843231
    [Google Scholar]
  57. Yin X.D. Ma K.Y. Wang Y.L. Sun Y. Shang X.F. Zhao Z.M. Wang R.X. Chen Y.J. Zhu J.K. Liu Y.Q. Design, synthesis, and antifungal evaluation of 8-hydroxyquinoline metal complexes against phytopathogenic fungi. J. Agric. Food Chem. 2020 68 40 11096 11104 10.1021/acs.jafc.0c01322 32941027
    [Google Scholar]
  58. Yang Y.D. He Y.H. Ma K.Y. Li H. Zhang Z.J. Sun Y. Wang Y.L. Hu G.F. Wang R.X. Liu Y.Q. Design and discovery of novel antifungal quinoline derivatives with acylhydrazide as a promising pharmacophore. J. Agric. Food Chem. 2021 69 30 8347 8357 10.1021/acs.jafc.1c00670 34288693
    [Google Scholar]
  59. Zhou Y. Yang C.J. Luo X.F. Li A.P. Zhang S.Y. An J.X. Zhang Z.J. Ma Y. Zhang B.Q. Liu Y.Q. Design, synthesis, and biological evaluation of novel berberine derivatives against phytopathogenic fungi. Pest Manag. Sci. 2022 78 10 4361 4376 10.1002/ps.7055 35758905
    [Google Scholar]
  60. Li G. Xu Q.L. He C.M. Zeng L. Wang H.F. Two new anti-fungal diterpenoids from the husks of Oryza sativa. Phytochem. Lett. 2014 10 309 312 10.1016/j.phytol.2014.10.023
    [Google Scholar]
  61. Li Y. Shao X. Xu J. Wei Y. Xu F. Wang H. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chem. 2017 234 62 67 10.1016/j.foodchem.2017.04.172 28551268
    [Google Scholar]
  62. Zhang Z.J. Jiang Z.Y. Zhu Q. Zhong G.H. Discovery of β-carboline oxadiazole derivatives as fungicidal agents against rice sheath blight. J. Agric. Food Chem. 2018 66 37 9598 9607 10.1021/acs.jafc.8b02124 30134651
    [Google Scholar]
  63. Shang X.F. Zhao Z.M. Li J.C. Yang G.Z. Liu Y.Q. Dai L.X. Zhang Z.J. Yang Z.G. Miao X.L. Yang C.J. Zhang J.Y. Insecticidal and antifungal activities of Rheum palmatum L. anthraquinones and structurally related compounds. Ind. Crops Prod. 2019 137 508 520 10.1016/j.indcrop.2019.05.055
    [Google Scholar]
  64. Ma D. Ji D. Zhang Z. Li B. Qin G. Xu Y. Chen T. Tian S. Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biol. Technol. 2019 150 158 165 10.1016/j.postharvbio.2019.01.005
    [Google Scholar]
  65. Wang B. Liu F. Li Q. Xu S. Zhao X. Xue P. Feng X. Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane. Pestic. Biochem. Physiol. 2019 159 59 67 10.1016/j.pestbp.2019.05.014 31400785
    [Google Scholar]
  66. Kumari M. Giri V.P. Pandey S. Kumar M. Katiyar R. Nautiyal C.S. Mishra A. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic. Biochem. Physiol. 2019 157 45 52 10.1016/j.pestbp.2019.03.005 31153476
    [Google Scholar]
  67. Fleury C. Mignotte B. Vayssière J.L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002 84 2-3 131 141 10.1016/S0300‑9084(02)01369‑X 12022944
    [Google Scholar]
  68. Xu T. Cao L. Zeng J. Franco C.M.M. Yang Y. Hu X. Liu Y. Wang X. Gao Y. Bu Z. Shi L. Zhou G. Zhou Q. Liu X. Zhu Y. The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pestic. Biochem. Physiol. 2019 160 58 69 10.1016/j.pestbp.2019.06.015 31519258
    [Google Scholar]
  69. Yankovskaya V. Horsefield R. Törnroth S. Luna-Chavez C. Miyoshi H. Léger C. Byrne B. Cecchini G. Iwata S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 2003 299 5607 700 704 10.1126/science.1079605 12560550
    [Google Scholar]
  70. Matsuzaki Y. Watanabe S. Harada T. Iwahashi F. Pyridachlometyl has a novel anti‐tubulin mode of action which could be useful in anti‐resistance management. Pest Manag. Sci. 2020 76 4 1393 1401 10.1002/ps.5652 31622533
    [Google Scholar]
/content/journals/cos/10.2174/0115701794397332250925103433
Loading
/content/journals/cos/10.2174/0115701794397332250925103433
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test