Skip to content
2000
image of Synthesis and Characterization of Double-Headed Heterocycles of 1,2,4-triazole: Antitumor and Antimicrobial Evaluation

Abstract

Introduction

Ribavirin is a 1,2,4-triazole nucleoside that has been used to treat hepatitis C virus infections. Previous studies have revealed a number of biological actions of 1,2,4-triazole and its Schiff bases, including herbicidal, fungicidal, anticancer, and antiviral activity. With readily available laboratory reagents, tartaric acid, and mercaptotriazolethanediol derivative, the authors aimed to synthesize and characterize some novel Schiff bases of the 1,2,4-triazole skeleton. Schiff bases are adaptable substances with a wide range of uses in biology and chemistry.

Methods

For obtaining Schiff bases of 1,2,4-triazole derivatives, the strategy involved synthesizing bis-mercapto-1,2,4- or/and 4-amino-5-(benzylthio)1,2,4-triazole and then reacting it with aromatic aldehydes, such as furfural, 4-amino -dimethylbenzaldehyde, 4-cyanobenzaldehyde, 2,4-dichlorobenzaldehyde, and 4-hydroxybenzaldehyde in MeOH/HCl. The prepared structures were confirmed using IR, 1H/13C NMR, and elemental analysis. The antimicrobial activity of the synthesized compounds was investigated against Gram +ve and Gram -ve bacteria, fungi, and yeast. Moreover, antitumor activity was tested for some compounds against one tumor cell line (MCF-7 cell line).

Results

Schiff bases of some doubleheaded acyclic nucleosides of 1,2,4-triazole were synthesized with high yields in the range 52%-87%. Compounds and exhibited high antimicrobial activity. Compound was considered the most active one, and it can potentially act as an antimicrobial agent compared with the standard references, Gentamycin and fluconazole. Finally, compounds and exhibited high antitumor activity. Compound showed antitumor activity more than the reference drug cisplatin.

Discussion

The structure of the synthesized Schiff bases of doubleheaded acyclic nucleosides of 1,2,4-triazole was established using elemental analysis, IR, MS, and 1H/13C NMR spectroscopy. The activity of Schiff bases was significantly influenced by the substituent groups of the aromatic ring, particularly electron-donating and electron-withdrawing groups.

Conclusion

The authors recommend further experimental assessments of compounds and as antimicrobial and antitumor agents, considering their promising biological results.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794376936250929093105
2025-10-20
2025-12-11
Loading full text...

Full text loading...

References

  1. Gupta O. Pradhan T. Chawla G. An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: Insight into structure activity relationship. J. Mol. Struct. 2023 1274 134487 134496 10.1016/j.molstruc.2022.134487
    [Google Scholar]
  2. Tolan H.E.M. Fahim A.M. Ismael E.H.I. Synthesis, biological activities, molecular docking, theoretical calculations of some 1,3,4-oxadiazoles, 1,2,4-triazoles, and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines derivatives. J. Mol. Struct. 2023 1283 135238 135249 10.1016/j.molstruc.2023.135238
    [Google Scholar]
  3. Yang L. Sun Y. He L. Fan Y. Wang T. Luo J. Synthesis and herbicidal activity of novel 1,2,4-triazole derivatives containing fluorine, phenyl sulfonyl and pyrimidine moieties. J. Mol. Struct. 2022 1259 132722 10.1016/j.molstruc.2022.132722
    [Google Scholar]
  4. Zafar W. Sumrra S.H. Chohan Z.H. A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases. Eur. J. Med. Chem. 2021 222 113602 10.1016/j.ejmech.2021.113602 34139626
    [Google Scholar]
  5. Raouf H. Beyramabadi S.A. Allameh S. Morsali A. Synthesis, experimental and theoretical characterizations of a 1,2,4-triazole Schiff base and its nickel(II) complex. J. Mol. Struct. 2019 1179 779 786 10.1016/j.molstruc.2018.11.073
    [Google Scholar]
  6. Kołodziej B. Morawiak M. Schilf W. Kamieński B. Structure investigations of Schiff bases derived from 3-amino-1H-1,2,4-triazole. J. Mol. Struct. 2019 1184 207 218 10.1016/j.molstruc.2019.02.027
    [Google Scholar]
  7. Dixit D. Verma P.K. Marwaha R.K. A review on ‘triazoles’: Their chemistry, synthesis and pharmacological potentials. J. Indian Chem. Soc. 2021 18 2535 2565
    [Google Scholar]
  8. Abdelli A. Azzouni S. Plais R. Gaucher A. Efrit M.L. Prim D. Recent advances in the chemistry of 1,2,4-triazoles: Synthesis, reactivity and biological activities. Tetrahedron Lett. 2021 86 153518 10.1016/j.tetlet.2021.153518
    [Google Scholar]
  9. El-Saghier A.M. Mohamed M.A. Abd-Allah O.A. Kadry A.M. Ibrahim T.M. Bekhit A.A. Green synthesis, antileishmanial activity evaluation, and in silico studies of new amino acid-coupled 1,2,4-triazoles. Med. Chem. Res. 2019 28 2 169 181 10.1007/s00044‑018‑2274‑x
    [Google Scholar]
  10. Pogaku V. Krishna V.S. Sriram D. Rangan K. Basavoju S. Ultrasonication-ionic liquid synergy for the synthesis of new potent anti-tuberculosis 1,2,4-triazol-1-yl-pyrazole based spirooxindolopyrrolizidines. Bioorg. Med. Chem. Lett. 2019 29 13 1682 1687 10.1016/j.bmcl.2019.04.026 31047752
    [Google Scholar]
  11. Balaydın H.T. Özil M. Şentürk M. Synthesis and glutathione reductase inhibitory properties of 5‐methyl‐2,4‐dihydro‐3 H ‐1,2,4‐triazol‐3‐one’s aryl Schiff base derivatives. Arch. Pharm. 2018 351 8 1800086 10.1002/ardp.201800086 29882995
    [Google Scholar]
  12. Basoglu Ozdemir S. Demirbas N. Demirbas A. Ayaz F.A. Çolak N. Microwave‐assisted synthesis, antioxidant, and antimicrobial evaluation of piperazine‐azole‐fluoroquinolone based 1,2,4‐triazole derivatives. J. Heterocycl. Chem. 2018 55 12 2744 2759 10.1002/jhet.3336
    [Google Scholar]
  13. Soleymanibrojeni M. Shi H. Udoh I.I. Liu F. Han E.H. Microcontainers with 3-amino-1,2,4-triazole-5-thiol for enhancing anticorrosion waterborne coatings for AA2024-T3. Prog. Org. Coat. 2019 137 105336 10.1016/j.porgcoat.2019.105336
    [Google Scholar]
  14. Adiguzel R. Türkan F. Yildiko Ü. Aras A. Evren E. Onkol T. Synthesis and in silico studies of novel Ru(II) complexes of Schiff base derivatives of 3-[(4-amino-5-thioxo-1,2,4-triazole-3-yl)methyl]-2(3H)-benzoxazolone compounds as potent Glutathione S-transferase and Cholinesterases Inhibitor. J. Mol. Struct. 2021 1231 129943 10.1016/j.molstruc.2021.129943
    [Google Scholar]
  15. Peyton L.R. Gallagher S. Hashemzadeh M. Triazole antifungals: A review. Drugs Today 2015 51 12 705 718 10.1358/dot.2015.51.12.2421058 26798851
    [Google Scholar]
  16. Aouad M.R. Mayaba M.M. Naqvi A. Bardaweel S.K. Al-blewi F.F. Messali M. Rezki N. ʻʻDesign, synthesis, in-silico and in-vitro antimicrobial screenings of novel 1,2,4-triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether. Chem. Cent. J. 2017 11 117 10.1186/s13065‑017‑0347‑4 29159721
    [Google Scholar]
  17. Alsaedi A.M.R. Farghaly T.A. Shaaban M.R. Synthesis and antimicrobial evaluation of novel pyrazolopyrimidines incorporated with mono- and diphenylsulfonyl groups. Molecules 2019 24 21 4009 10.3390/molecules24214009
    [Google Scholar]
  18. Chavan S.A. Ulhe A.G. Gharad S.A. Berad B.N. Synthesis and anticancer activity of Bis-(N -glucosylated triazolothiadiazolyl) alkanes via cyclocondensation reaction involving C-s and C-n bond formation. Phosphorus Sulfur Silicon Relat. Elem. 2015 190 12 2315 2324 10.1080/10426507.2015.1083570
    [Google Scholar]
  19. Haggam R.A. Synthesis and cyclization of some 1,2-bis-(4-amino-5-mercapto-1,2,4-triazol-3-yl)-ethane derivatives under conventional and microwave conditions: Antimicrobial activity. Res. Chem. Intermed. 2016 42 10 7313 7328 10.1007/s11164‑016‑2538‑3
    [Google Scholar]
  20. Moustafa A.H. Haggam R.A. Younes M.E. El Ashry E.S.H. The Synthesis of Triazolothiadiazines and Thiadiazoles From 1,2-Bis-(4-amino-5-mercapto-1,2,4-triazol-3-yl)- Ethanol and Ethane. Phosphorus Sulfur Silicon Relat. Elem. 2006 181 10 2361 2371 10.1080/10426500600634681
    [Google Scholar]
  21. Pavurala S. Vaarla K. Kesharwani R. Naesens L. Liekens S. Vedula R.R. Bis coumarinyl bis triazolothiadiazinyl ethane derivatives: Synthesis, antiviral activity evaluation, and molecular docking studies. Synth. Commun. 2018 48 12 1494 1503 10.1080/00397911.2018.1455871
    [Google Scholar]
  22. Moustafa A.H. Haggam R.A. Younes M.E. El Ashry E.S.H. Double-headed Acyclo C-Nucleoside Analogues. Functionalized 1,2-bis-(1,2,4-Triazol-3-yl)ethane-1,2-diol. Nucleosides Nucleotides Nucleic Acids 2005 24 10-12 1885 1894 10.1080/15257770500268962 16438055
    [Google Scholar]
  23. Dymock B.W. Jones P.S. Wilson F.X. Novel approaches to the treatment of hepatitis C virus infection. Antivir. Chem. Chemother. 2000 11 2 79 86 10.1177/095632020001100201 10819433
    [Google Scholar]
  24. Cascioferro S. Parrino B. Carbone D. Schillaci D. Giovannetti E. Cirrincione G. Diana P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem. 2020 63 15 7923 7956 10.1021/acs.jmedchem.9b01245 32208685
    [Google Scholar]
  25. Cascioferro S. Carbone D. Parrino B. Pecoraro C. Giovannetti E. Cirrincione G. Diana P. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm‐associated infections. ChemMedChem 2021 16 1 65 80 10.1002/cmdc.202000677 33090669
    [Google Scholar]
  26. Zeiler M.J. Melander R.J. Melander C. Second‐generation meridianin analogues inhibit the formation of Mycobacterium smegmatis biofilms and sensitize polymyxin‐resistant gram‐negative bacteria to colistin. ChemMedChem 2020 15 17 1672 1679 10.1002/cmdc.202000438 32662926
    [Google Scholar]
  27. Parrino B. Carbone D. Cirrincione G. Diana P. Cascioferro S. Inhibitors of antibiotic resistance mechanisms: Clinical applications and future perspectives. Future Med. Chem. 2020 12 5 357 359 10.4155/fmc‑2019‑0326 32027174
    [Google Scholar]
  28. Schillaci D. Spanò V. Parrino B. Carbone A. Montalbano A. Barraja P. Diana P. Cirrincione G. Cascioferro S. Pharmaceutical approaches to target antibiotic resistance mechanisms. J. Med. Chem. 2017 60 20 8268 8297 10.1021/acs.jmedchem.7b00215 28594170
    [Google Scholar]
  29. Parrino B. Carbone D. Cascioferro S. Pecoraro C. Giovannetti E. Deng D. Sarno V.D. Musella S. Auriemma G. Cusimano M.G. Schillaci D. Cirrincione G. Diana, P. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur. J. Med. Chem. 2021 209 112892 10.1016/j.ejmech.2020.112892 33035921
    [Google Scholar]
  30. Kamel M.M. Megally Abdo N.Y. Synthesis of novel 1,2,4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents. Eur. J. Med. Chem. 2014 86 75 80 10.1016/j.ejmech.2014.08.047 25147148
    [Google Scholar]
  31. Elia G. Belloli C. Cirone F. Lucente M.S. Caruso M. Martella V. Decaro N. Buonavoglia C. Ormas P. In vitro efficacy of ribavirin against canine distemper virus. Antiviral Res. 2008 77 2 108 113 10.1016/j.antiviral.2007.09.004 17949825
    [Google Scholar]
  32. Bani-Sadr F. Carrat F. Pol S. Hor R. Rosenthal E. Goujard C. Morand P. Lunel-Fabiani F. Salmon-Ceron D. Piroth L. Pialoux G. Bentata M. Cacoub P. Perronne C. Risk factors for symptomatic mitochondrial toxicity in HIV/hepatitis C virus-coinfected patients during interferon plus ribavirin-based therapy. J. Acquir. Immune Defic. Syndr. 2005 40 1 47 52 10.1097/01.qai.0000174649.51084.46 16123681
    [Google Scholar]
  33. Alvarez D. Dieterich D.T. Brau N. Moorehead L. Ball L. Sulkowski M.S. Zidovudine use but not weight‐based ribavirin dosing impacts anaemia during HCV treatment in HIV‐infected persons. J. Viral Hepat. 2006 13 10 683 689 10.1111/j.1365‑2893.2006.00749.x 16970600
    [Google Scholar]
  34. Girmenia C. New generation azole antifungals in clinical investigation. Expert Opin. Investig. Drugs 2009 18 9 1279 1295 10.1517/13543780903176407 19678798
    [Google Scholar]
  35. Crotty S. Cameron C. Andino R. Ribavirin’s antiviral mechanism of action: Lethal mutagenesis? J. Mol. Med. (Berl.) 2002 80 2 86 95 10.1007/s00109‑001‑0308‑0 11907645
    [Google Scholar]
  36. Rasras A.J. Al-Qawasmeh R.A. El-Naggar M. Shehadi I. Elaasser M.M. Al-Soud Y.A. Design, synthesis and antimicrobial assessments of aminoacetylenic-piperazine nitroimidazole hybrid compounds. Z. Naturforsch. C J. Biosci. 2023 78 3-4 113 121 10.1515/znc‑2022‑0043 35942947
    [Google Scholar]
  37. Ghorab M.M. Alsaid M.S. El-Gaby M.S.A. Safwat N.A. Elaasser M.M. Soliman A.M. Biological evaluation of some new N -(2,6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur. J. Med. Chem. 2016 124 299 310 10.1016/j.ejmech.2016.08.060 27597407
    [Google Scholar]
  38. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  39. Mahmoud H.K. Abdelhady H.A. Elaasser M.M. Hassain D.Z.H. Gomha S.M. Microwave-assisted one-pot three component synthesis of some thiazolyl(hydrazonoethyl)thiazoles as potential anti-breast cancer agents. Polycycl. Aromat. Compd. 2022 42 10 7232 7246 10.1080/10406638.2021.1998146
    [Google Scholar]
  40. Schiff H. Knowledge of the amino and hydroxyl compounds of the benzaldehyde series. Annalen 1864 131 2 118 119 10.1002/jlac.18641310113
    [Google Scholar]
  41. Guo H-F. Pan Y. Ma D-Y. Yan P. Effect of electron-withdrawing groups of Schiff base and its palladium complex on antimicrobial and catalytic activities. Wuji Huaxue Xuebao 2013 29 7 1149 1153 10.3969/j.issn.1001‑4861.2013.00.240
    [Google Scholar]
  42. Khan R. Rashid S. Khan S. Almutawif Y.A. Pari B. Synthesis and evaluation of vanillin Schiff bases as potential antimicrobial agents against ESBL-producing bacteria: towards novel interventions in antimicrobial stewardship. Sci. Rep. 2024 14 1 28007 10.1038/s41598‑024‑78302‑9 39543243
    [Google Scholar]
  43. Ceramella J. Iacopetta D. Catalano A. Cirillo F. Lappano R. Sinicropi M.S. A review on the antimicrobial activity of schiff bases: Data collection and recent studies. Antibiotics 2022 11 2 191 10.3390/antibiotics11020191 35203793
    [Google Scholar]
  44. Sankar R. Sharmila T.M. Schiff bases-based metallo complexes and their crucial role in the realm of pharmacology. A review. Results Chem. 2023 6 101179 10.1016/j.rechem.2023.101179
    [Google Scholar]
  45. Khan M.A.R. Habib M.A. Naime J. Hasan Rumon M.M. Shamim Al Mamun M. Nazmul Islam A.B.M. Mahiuddin M. Rezaul Karim K.M. Hosna Ara M. Mosummath H.A. A review on synthesis, characterizations, and applications of Schiff base functionalized nanoparticles. Results Chem. 2023 6 101160 10.1016/j.rechem.2023.101160
    [Google Scholar]
  46. da Silva C.M. da Silva D.L. Modolo L.V. Alves R.B. de Resende M.A. Martins C.V.B. de Fátima Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011 2 1 1 8 10.1016/j.jare.2010.05.004
    [Google Scholar]
  47. Sivakumar K.K. Rajasekharan A. Rao R. Narasimhan B. Synthesis, SAR study and evaluation of mannich and schiff bases of pyrazol-5(4H)-one moiety containing 3-(hydrazinyl)-2-phenylquinazolin-4(3H)-one. Indian J. Pharm. Sci. 2013 75 4 463 475 10.4103/0250‑474X.119832 24302802
    [Google Scholar]
  48. Zoubi W.A. Biological activities of schiff bases and their complexes: A review of recent works. Int. J. Org. Chem. (Irvine) 2013 3 3 73 95 10.4236/ijoc.2013.33A008
    [Google Scholar]
  49. Singh A. Barman P. Gogoi H.P. Influence of Steric and Electronic Effects in Structure‐Activity Relationships of Schiff Base Ligands: Green Synthesis, Characterization, DFT/TD‐DFT Calculations, Molecular Docking and Biological Studies. ChemistrySelect 2022 7 48 202204043 10.1002/slct.202204043
    [Google Scholar]
  50. Thakur S. Jaryal A. Bhalla A. Recent advances in biological and medicinal profile of schiff bases and their metal complexes: An updated version (2018-2023). Results Chem. 2024 7 101350 10.1016/j.rechem.2024.101350
    [Google Scholar]
  51. Bersani M. Failla M. Vascon F. Gianquinto E. Bertarini L. Baroni M. Cruciani G. Verdirosa F. Sannio F. Docquier J.D. Cendron L. Spyrakis F. Lazzarato L. Tondi D. Structure-based optimization of 1,2,4-triazole-3-thione derivatives: Improving inhibition of NDM-/VIM-type metallo-β-lactamases and synergistic activity on resistant bacteria. Pharmaceuticals 2023 16 12 1682 10.3390/ph16121682 38139809
    [Google Scholar]
/content/journals/cos/10.2174/0115701794376936250929093105
Loading
/content/journals/cos/10.2174/0115701794376936250929093105
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test