Skip to content
2000
image of Recent Advances in the Synthesis and Biological Activities of Quinolactacin and Its Derivatives: A Comprehensive Review

Abstract

In recent years, quinolactacins and their derivatives have attracted significant research attention due to their distinctive structural features and intriguing biological properties. These heterocyclic compounds have emerged as promising candidates in medicinal chemistry due to their broad spectrum of therapeutic activities. This review article provides a comprehensive study on recent progress in synthesising and investigating the biological properties of quinolactacins and their diverse analogues, offering insights into the diverse synthetic strategies that have been explored to enhance the efficiency and scalability of their production. The primary emphasis lies on the biological activities exhibited by quinolactacins, including their notable anti-bacterial efficacies, anti-cancer, anti-proliferative, anti-oxidant, anti-malarial, and anti-viral. These compounds have shown great potential as therapeutic agents in the fight against various infectious diseases and cancers, making them promising candidates for drug development. Moreover, this study sheds light on the latest endeavours aimed for the synthesis of quinolactacins and their derivatives. This study serves as a valuable resource for researchers who aim to investigate and further harness the therapeutic potential of quinolactacins and their derivatives in the battle against life-threatening diseases, paving the way for future breakthroughs in drug development.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794378020250717163142
2025-08-06
2025-10-31
Loading full text...

Full text loading...

References

  1. Atanasov A.G. Zotchev S.B. Dirsch V.M. Orhan I.E. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  2. Li G. Lou H.X. Strategies to diversify natural products for drug discovery. Med. Res. Rev. 2018 38 4 1255 1294 10.1002/med.21474 29064108
    [Google Scholar]
  3. Louie K.B. Kosina S.M. Hu Y. Otani H. de Raad M. Kuftin A.N. Mass spectrometry for natural product discovery. Comprehensive Nat. Prod. 2020 III 263 306
    [Google Scholar]
  4. Chapter 12. Stud. Nat. Prod. Chem. 2019 62 433 453
    [Google Scholar]
  5. Park S.J. Cho K.N. Kim W.G. Lee K.I. An expedient synthesis of (+)-quinolactacin A2. Tetrahedron Lett. 2004 45 48 8793 8795 10.1016/j.tetlet.2004.10.001
    [Google Scholar]
  6. Li P. Lu H. Zhang Y. Zhang X. Liu L. Wang M. Liu L. The natural products discovered in marine sponge-associated microorganisms: Structures, activities, and mining strategy. Front. Mar. Sci. 2023 10 1191858 10.3389/fmars.2023.1191858
    [Google Scholar]
  7. Kakinuma N. Iwai H. Takahashi S. Hamano K. Yanagisawa T. Nagai K. Tanaka K. Suzuki K. Kirikae F. Kirikae T. Nakagawa A. Quinolactacins A, B and C: Novel quinolone compounds from Penicillium sp. EPF-6. I. Taxonomy, production, isolation and biological properties. J. Antibiot. 2000 53 11 1247 1251 10.7164/antibiotics.53.1247 11213284
    [Google Scholar]
  8. Sasaki T. Takahashi S. Uchida K. Funayama S. Kainosho M. Nakagawa A. Biosynthesis of quinolactacin A, a TNF production inhibitor. J. Antibiot. 2006 59 7 418 427 10.1038/ja.2006.59 17025018
    [Google Scholar]
  9. Lu L. Hu W. Tian Z. Yuan D. Yi G. Zhou Y. Cheng Q. Zhu J. Li M. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019 14 1 11 10.1186/s13020‑019‑0232‑2 30936939
    [Google Scholar]
  10. Zhu J. Lu Y. Chen J. Chen J. Zhang H. Bao X. Ye X. Wang H. Total synthesis of quinolactacin-H from marine-derived Penicillium sp. ENP701 and biological activities. RSC Advances 2020 10 41 24251 24254 10.1039/D0RA05244B 35516178
    [Google Scholar]
  11. Kim W.G. Song N.K. Yoo Quinolactacins I.D. A1, A2, B1, B2, C1, and C2, novel quinolone alkaloids from Penicillium citrinum. J. Antibiot. 1980 33 831 835
    [Google Scholar]
  12. M Heravi M. Zadsirjan V. Malmir M. Application of the asymmetric pictet-spengler reaction in the total synthesis of natural products and relevant biologically active compounds. Molecules 2018 23 4 943 10.3390/molecules23040943 29670061
    [Google Scholar]
  13. Tatsuta K. Misawa H. Chikauchi K. Biomimetic total synthesis of quinolactacin B, TNF production inhibitor, and its analogs. J. Antibiot. 2001 54 1 109 112 10.7164/antibiotics.54.109 11269706
    [Google Scholar]
  14. Zhang X. Jiang W. Sui Z. Concise enantioselective syntheses of quinolactacins A and B through alternative Winterfeldt oxidation. J. Org. Chem. 2003 68 11 4523 4526 10.1021/jo020746a 12762761
    [Google Scholar]
  15. Karolina P. Pictet-Spengler reactions for the synthesis of pharmaceutically relevant heterocycles. Curr. Opinion in Drug Disc. &. Develop. 2010 13 6 669 684
    [Google Scholar]
  16. Waldmann H. Schmidt G. Henke H. Burkard M. Asymmetric pictet-spengler reactions employing n, n-phthaloyl amino acids as chiral auxiliary groups. Angew. Chem. Int. Ed. Engl. 1995 34 21 2402 2403 10.1002/anie.199524021
    [Google Scholar]
  17. Petersen R.G. Komnatnyy V.V. Nielsen T.E. Synthesis of constrained peptidomimetics via the Pictet‑Spengler reaction. Top. Heterocycl. Chem. 49 81 103 2017 10.1007/7081_2015_190
    [Google Scholar]
  18. Li-Na W. Su-Li S. Jin Qu. Simple and efficient synthesis of tetrahydro-β-carbolines via the Pictet-Spengler reaction in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). RSC Advances 2020 10 24251 24254
    [Google Scholar]
  19. Ashari N.A.N. Pungot N.H. Jani N.A. Shaameri Z. Efficient synthesis of novel 1-substituted β-carboline derivatives via pictet-spengler cyclization of 5-hydroxy-L-tryptophan. Malaysian J. Fund. Appl. Sci. 2022 18 2 218 226 10.11113/mjfas.v18n2.2331
    [Google Scholar]
  20. Ash’ari N.A.N. Shaameri Z. Pungot N.H. Jani N.A. Facile synthesis of n-alkylated daibucarboline A derivatives via pictet-spengler condensation of tryptamine. Sci. 2021 25 5 706 715
    [Google Scholar]
  21. Abe M. Imai T. Ishii N. Usui M. Synthesis of quinolactacide via an acyl migration reaction and dehydrogenation with manganese dioxide, and its insecticidal activities. Biosci. Biotechnol. Biochem. 2006 70 1 303 306 10.1271/bbb.70.303 16428857
    [Google Scholar]
  22. Alvaro M. Baldoví V. García H. Miranda M.A. Primoa J. A novel photochemical 1,4-acyl migration in enol esters. The photolysis of enol acetates of 3-phenylpropiophenones. Tetrahedron Lett. 1987 28 31 3613 3614 10.1016/S0040‑4039(00)95549‑7
    [Google Scholar]
  23. Shankaraiah N. da Silva W.A. Andrade C.K.Z. Santos L.S. Enantioselective total synthesis of (S)-(−)-quinolactacin B. Tetrahedron Lett. 2008 49 27 4289 4291 10.1016/j.tetlet.2008.04.130
    [Google Scholar]
  24. Uematsu N. Fujii A. Hashiguchi S. Ikariya T. Noyori R. Asymmetric transfer hydrogenation of imines. J. Am. Chem. Soc. 1996 118 20 4916 4917 10.1021/ja960364k
    [Google Scholar]
  25. Yamakawa M. Ito H. Noyori R. Mechanism of asymmetric transfer hydrogenation of ketones catalyzed by chiral η6-arene–ruthenium(II) complexes. J. Am. Chem. Soc. 2000 122 7 1466 1478 10.1021/ja991638h
    [Google Scholar]
  26. Santos L.S. Pilli R.A. Rawal V.H. Enantioselective total syntheses of (+)-arborescidine A, (-)-arborescidine B, and (-)-arborescidine C. J. Org. Chem. 2004 69 4 1283 1289 10.1021/jo035165f 14961682
    [Google Scholar]
  27. Majid M. Heravi S.K. Niousha N. Bischler-Napieralski reaction in the syntheses of isoquinolines. Adv. Heterocycl. Chem. 2014 112 143 172
    [Google Scholar]
  28. da Silva G. Moreira R. Silva A.M.S. Chapter 12 - Bioactive quinolactacins and structurally related pyrroloquinolones. Studi. Nat. Prod. Chem. 2019 62 433 453 10.1016/B978‑0‑444‑64185‑4.00012‑5
    [Google Scholar]
  29. Machtey V. Gottlieb H.E. Byk G. Total synthesis of structures proposed for quinocitrinines A and B and their analogs. Microwave energy as efficient tool for generating heterocycles. ARKIVOC 2011 2011 9 308 324 10.3998/ark.5550190.0012.923
    [Google Scholar]
  30. Kulkarni P.P. Kadam A.J. Mane R.B. Desai U.V. Wadgaonkar P.P. Demethylation of methyl aryl ethers using pyridine hydrochloride in solvent-free conditions under microwave irradiation. J. Chem. Res. 1999 ••• 394 395
    [Google Scholar]
  31. Saito K. Yoshida M. Uekusa H. Doi T. Facile synthesis of pyrrolyl 4-quinolinone alkaloid quinolactacide by 9-AJ-catalyzed tandem acyl transfer-cyclization of O-alkynoylaniline derivatives. ACS Omega 2017 2 8 4370 4381 10.1021/acsomega.7b00793 31457730
    [Google Scholar]
  32. Nagy A. Novák Z. Kotschy A. Sequential and domino Sonogashira coupling: Efficient tools for the synthesis of diarylalkynes. J. Organomet. Chem. 2005 690 20 4453 4461 10.1016/j.jorganchem.2004.12.036
    [Google Scholar]
  33. Sonogashira coupling. 2021 Available from: https://www.organic-chemistry.org/namedreactions/sonogashira-coupling.shtm
  34. Jacobsen E.N. Total synthesis of quinolactacin and its biological evaluation. J. Am. Chem. Soc. 2004 126 14869 14870
    [Google Scholar]
  35. Scharf M.J. List B. A catalytic asymmetric pictet-spengler platform as a biomimetic diversification strategy toward naturally occurring alkaloids. J. Am. Chem. Soc. 2022 144 34 15451 15456 10.1021/jacs.2c06664 35976162
    [Google Scholar]
  36. Andres R. Wang Q. Zhu J. Catalytic enantioselective Pictet–Spengler reaction of α-Ketoamides catalyzed by a single H-bond donor organocatalyst. Angew. Chem. Int. Ed. 2022 61 19 202201788 10.1002/anie.202201788 35225416
    [Google Scholar]
  37. Ismail A.Z.H. Mohd Arif P.N.A. Rezali N.S. Mohammat M.F. Shaameri Z. Synthetic approaches towards quinolactacin derivatives via diels-alder, acyl migration and multicomponent reactions. Malays. J. Anal. Sci. 2022 26 755 765
    [Google Scholar]
  38. Caplar V. Total synthesis of quinolactacin and its biological activities. J. Org. Chem. 2003 68 5213 5215
    [Google Scholar]
  39. Zholdassov Y.S. Yuan L. Garcia S.R. Kwok R.W. Boscoboinik A. Valles D.J. Marianski M. Martini A. Carpick R.W. Braunschweig A.B. Acceleration of Diels-Alder reactions by mechanical distortion. Science 2023 380 6649 1053 1058 10.1126/science.adf5273 37289895
    [Google Scholar]
  40. Yuan Y. Li X. Ding K. Acid-free aza diels-alder reaction of danishefsky’s diene with imines. Org. Lett. 2002 4 19 3309 3311 10.1021/ol0265822 12227776
    [Google Scholar]
  41. Patel D.B. Parmar J.A. Patel S.S. Naik U.J. Patel H.D. Recent advances in ester synthesis by Multi-Component Reactions (MCRs): A Review. Curr. Org. Chem. 2021 25 5 539 553 10.2174/1385272825666210111111805
    [Google Scholar]
  42. Thai T. Salisbury B.H. Zito P.M. Ciprofloxacin Treasure Island, Florida StatPearls 2023
    [Google Scholar]
  43. Pham T.D.M. Ziora Z.M. Blaskovich M.A.T. Quinolone antibiotics. MedChemComm 2019 10 10 1719 1739 10.1039/C9MD00120D 31803393
    [Google Scholar]
  44. Doble A. Nalidixic acid. X Pharm.: The Compr. Pharmacol. Ref. 2007 1 5
    [Google Scholar]
  45. Paton J.H. Reeves D.S. Fluoroquinolone antibiotics. Drugs 1988 36 2 193 228 10.2165/00003495‑198836020‑00004 3053126
    [Google Scholar]
  46. What is cancer? 2023 Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
  47. Cancer. 2023 Available from: https://www.who.int/health-topics/cancer#tab=tab_1
  48. Cancer - NHS. 2023 Available from: https://www.nhs.uk/conditions/cancer/
  49. What is cancer? cancer.net. 2023 Available from: https://www.cancer.net/navigating-cancer-care/cancer-basics/what-cancer
  50. Kloskowski T. Frąckowiak S. Adamowicz J. Szeliski K. Rasmus M. Drewa T. Pokrywczyńska M. Quinolones as a potential drug in genitourinary cancer treatment-a literature review. Front. Oncol. 2022 12 890337 10.3389/fonc.2022.890337 35756639
    [Google Scholar]
  51. Yadav V. Talwar P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed. Pharmacother. 2019 111 934 946 10.1016/j.biopha.2018.12.119 30841473
    [Google Scholar]
  52. Kloskowski T. Szeliski K. Fekner Z. Rasmus M. Dąbrowski P. Wolska A. Siedlecka N. Adamowicz J. Drewa T. Pokrywczyńska M. Ciprofloxacin and levofloxacin as potential drugs in genitourinary cancer treatment-the effect of dose–response on 2D and 3D cell cultures. Int. J. Mol. Sci. 2021 22 21 11970 10.3390/ijms222111970 34769400
    [Google Scholar]
  53. Hawtin R.E. Stockett D.E. Byl J.A.W. McDowell R.S. Tan N. Arkin M.R. Conroy A. Yang W. Osheroff N. Fox J.A. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One 2010 5 4 10186 10.1371/journal.pone.0010186 20419121
    [Google Scholar]
  54. Scatena C.D. Kumer J.L. Arbitrario J.P. Howlett A.R. Hawtin R.E. Fox J.A. Silverman J.A. Voreloxin, a first-in-class anticancer quinolone derivative, acts synergistically with cytarabine in vitro and induces bone marrow aplasia in vivo. Cancer Chemother. Pharmacol. 2010 66 5 881 888 10.1007/s00280‑009‑1234‑z 20058009
    [Google Scholar]
  55. Zhao F. Liu Z. Yang S. Ding N. Gao X. Quinolactacin biosynthesis involves non-ribosomal-peptide-synthetase-catalyzed Dieckmann condensation to form the quinolone-γ-lactam hybrid. Angew. Chem. Int. Ed. 2020 59 43 19108 19114 10.1002/anie.202005770 32663343
    [Google Scholar]
  56. Kyeremeh K. Owusu K.B. Ofosuhene M. Ohashi M. Agyapong J. Camas A.S. Mustafa Camas M. Anti-proliferative and anti-plasmodial activity of quinolactacin A2, citrinadin a and butrecitrinadin co-isolated from a ghanaian mangrove endophytic fungus cladosporium oxysporum strain BRS2A-AR2F. Journal of chemistry and applications 2017 3 1 01 12 10.13188/2380‑5021.1000007
    [Google Scholar]
  57. Kyeremeh K. Isolation of quinolactacin derivatives from Cladosporium oxysporum and their biological activities. J. Chem. Pharm. Res. 2017 9 3 41 48
    [Google Scholar]
  58. Citrinadin A and butrecitrinadin co-isolated from a ghanaian mangrove endophytic fungus cladosporium oxysporum strain BRS2A-AR2F. 2023 Available from: https://www.researchgate.net/publication/319230669_Anti-Proliferative_and_Anti-Plasmodia_Activity_of_Quinolactacin_A2_Citrinadin_A_and_Butrecitrinadin_co-isolated_from_a_Ghanaian_Mangrove_Endophytic_Fungus_Cladosporium_oxysporum_strain_BRS2A-AR2F
  59. Meiyanto E. Putri H. Arum Larasati Y. Yudi Utomo R. Istighfari Jenie R. Ikawati M. Lestari B. Yoneda-Kato N. Nakamae I. Kawaichi M. Kato J.Y. Anti-proliferative and anti-metastatic potential of curcumin analogue, pentagamavunon-1 (pgv-1), toward highly metastatic breast cancer cells in correlation with ROS generation. Adv. Pharm. Bull. 2019 9 3 445 452 10.15171/apb.2019.053 31592109
    [Google Scholar]
  60. Malaria. 2023 Available from: https://www.who.int/news-room/questions-and-answers/item/malaria?gclid=Cj0KCQjw9fqnBhDSARIsAHlcQYTghNx3SpzLyJxwIMtld6aUzabul1SCxGDBpXRE4HrCOI53DoPTuu8aAo3JEALw_wcB
  61. Malaria. 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/malaria
  62. Hu Y.Q. Gao C. Zhang S. Xu L. Xu Z. Feng L.S. Wu X. Zhao F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 2017 139 22 47 10.1016/j.ejmech.2017.07.061 28800458
    [Google Scholar]
  63. Shamsujunaidi R. Saaidin A.S. Aziz M.H.A. Mohammat M.F. Pungot N.H. Studies on the synthesis of β-carboline and its derivatives as potential antimalarial drug components. Malays. J. Anal. Sci. 2023 27 1 44 53
    [Google Scholar]
  64. Fan Y.L. Cheng X.W. Wu J.B. Liu M. Zhang F.Z. Xu Z. Feng L.S. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview. Eur. J. Med. Chem. 2018 146 1 14 10.1016/j.ejmech.2018.01.039 29360043
    [Google Scholar]
  65. Cardiovascular diseases. 2023 Available from: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
  66. Moris D. Spartalis M. Spartalis E. Karachaliou G.S. Karaolanis G.I. Tsourouflis G. Tsilimigras D.I. Tzatzaki E. Theocharis S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med. 2017 5 16 326 10.21037/atm.2017.06.27 28861423
    [Google Scholar]
  67. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative Stress: A key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  68. Ceylan Ş. Cebeci Y.U. Demirbaş N. Batur Ö.Ö. Özakpınar Ö.B. Antimicrobial, antioxidant and antiproliferative activities of novel quinolones. ChemistrySelect 2020 5 36 11340 11346 10.1002/slct.202002779
    [Google Scholar]
  69. How do free radicals affect the body? 2023 Available from: https://www.medicalnewstoday.com/articles/318652
  70. Scroggs S.L.P. Gass J.T. Chinnasamy R. Widen S.G. Azar S.R. Rossi S.L. Arterburn J.B. Vasilakis N. Hanley K.A. Evolution of resistance to fluoroquinolones by dengue virus serotype 4 provides insight into mechanism of action and consequences for viral fitness. Virology 2021 552 94 106 10.1016/j.virol.2020.09.004 33120225
    [Google Scholar]
  71. Gaillard T. Madamet M. Tsombeng F.F. Dormoi J. Pradines B. Antibiotics in malaria therapy: Which antibiotics except tetracyclines and macrolides may be used against malaria? Malar. J. 2016 15 1 556 10.1186/s12936‑016‑1613‑y 27846898
    [Google Scholar]
  72. Khan I.A. Siddiqui S. Rehmani S. Kazmi S.U. Ali S.H. Fluoroquinolones inhibit HCV by targeting its helicase. Antivir. Ther. 2012 17 3 467 476 10.3851/IMP1937 22293206
    [Google Scholar]
/content/journals/cos/10.2174/0115701794378020250717163142
Loading
/content/journals/cos/10.2174/0115701794378020250717163142
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test