Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Aims and Objectives

It is well established that 4-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·HO under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.

Materials and Methods

In this study, lithium hydroxide monohydrate (LiOH·HO) was used as the catalyst. To explore environmentally friendly methods, two novel approaches utilizing pure water were investigated (Method 1 and Method 2). The first method involves the use of alkylidene reagents malononitrile and ethyl acetoacetate in an aqueous medium. The second method features a multi-component cyclocondensation of aromatic aldehydes, malononitrile, and ethyl acetoacetate, activated by ultrasound waves and conducted in pure water. The impact of various substituents on the formation of 4-pyrans, including both electron-poor and electron-rich aromatic aldehydes, was also evaluated.

Results

Most products were obtained in high yield and as very pure crystals with distinct colors. Generally, aromatic aldehydes with electron-withdrawing groups (Cl) exhibited greater reactivity than those with electron-donating groups (OMe). This trend is clearly demonstrated when comparing entries 3 and 4 with entries 5 and 6 in Tables.

Conclusion

Compared to other procedures, this method is simple, fast, eco-compatible since it uses water as a solvent. In addition, the products are obtained in good yields in the pure state after simple recrystallization without the need for other purification techniques, such as column chromatography. These factors make this novel approach highly attractive for the synthesis of 4-pyrans.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794351667241112071850
2025-01-10
2025-09-14
Loading full text...

Full text loading...

References

  1. HajiM. HosseinzadehM. Cyclohepta[b]pyran: An important scaffold in biologically active natural products.Med. Chem. Res.202231122059207310.1007/s00044‑022‑02958‑z
    [Google Scholar]
  2. JacquesR. PalR. ParkerN.A. SearC.E. SmithP.W. RibaucourtA. HodgsonD.M. Recent applications in natural product synthesis of dihydrofuran and -pyran formation by ring-closing alkene metathesis.Org. Biomol. Chem.201614255875589310.1039/C6OB00593D 27108941
    [Google Scholar]
  3. JungE.J. ParkB.H. LeeY.R. Environmentally benign, one-pot synthesis of pyrans by domino Knoevenagel/6π-electrocyclization in water and application to natural products.Green Chem.201012112003201110.1039/c0gc00265h
    [Google Scholar]
  4. SharmaS. BanerjeeB. BrahmachariG. KantR. GuptaV.K. X-ray crystallography of methyl (6-amino-5-cyano-2-methyl-4-(2-nitrophenyl)-4H-pyran)-3-carboxylate.Crystallogr. Rep.20166171051105410.1134/S1063774516070105
    [Google Scholar]
  5. ChakrabortyK. DharaS. First report of substituted 2 H- pyranoids from brown seaweed Turbinaria conoides with antioxidant and anti-inflammatory activities.Nat. Prod. Res.202034243451346110.1080/14786419.2019.1578761 30835545
    [Google Scholar]
  6. RahilaR. RaiP. IbadA. SagirH. SiddiquiI.R. Chitosan-CTAB: An efficient aqueous micellar system for the sequential one-pot synthesis of highly functionalized 2-amino-4H-pyrans.ChemistrySelect2016171300130410.1002/slct.201600003
    [Google Scholar]
  7. SafariF. HosseiniH. BayatM. RanjbarA. Synthesis and evaluation of antimicrobial activity, cytotoxic and pro-apoptotic effects of novel spiro-4 H-pyran derivatives.RSC Advances2019943248432485110.1039/C9RA03196K 35528646
    [Google Scholar]
  8. NazariP. BaziA. AyatollahiS.A. DolatiH. MahdaviS.M. RafighdoostL. AmirmostofianM. Synthesis and evaluation of the antimicrobial activity of spiro-4h-pyran derivatives on some Gram positive and Gram-negative bacteria.Iran. J. Pharm. Res.2017163943952 29201085
    [Google Scholar]
  9. SirousH. ChemiG. GemmaS. ButiniS. DebyserZ. ChristF. SaghaieL. BrogiS. FassihiA. CampianiG. BrindisiM. Identification of novel 3-hydroxy-pyran-4-one derivatives as potent HIV-1 integrase inhibitors using in silico structure-based combinatorial library design approach.Front Chem.2019757410.3389/fchem.2019.00574 31457006
    [Google Scholar]
  10. ParmarH. UnjiyaP. PatelU. ValaM. KatariaB. ShahM. Zn/Mo nanocomposite: An efficient and reusable catalyst for the synthesis of 4-H Pyran derivatives.J. Indian Chem. Soc.2024101410113010.1016/j.jics.2024.101130
    [Google Scholar]
  11. El-SayedN.N.E. ZakiM.E.A. Al-HussainS.A. Ben BachaA. BerredjemM. MasandV.H. AlmarhoonZ.M. OmarH.S. Synthesis and evaluation of some new 4H-pyran derivatives as antioxidant, antibacterial and anti-HCT-116 Cells of CRC, with molecular docking, antiproliferative, apoptotic and ADME investigations.Pharmaceuticals (Basel)202215789110.3390/ph15070891 35890189
    [Google Scholar]
  12. HasaninejadA. ShekouhyM. GolzarN. ZareA. DoroodmandM.M. Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives.Appl. Catal. A Gen.20114021-2112210.1016/j.apcata.2011.04.012
    [Google Scholar]
  13. DwivediG.R. RaiR. PratapR. SinghK. PatiS. SahuS.N. KantR. DarokarM.P. YadavD.K. Drug resistance reversal potential of multifunctional thieno[3,2-c]pyran via potentiation of antibiotics in MDR P. aeruginosa.Biomed. Pharmacother.202114211208410.1016/j.biopha.2021.112084 34449308
    [Google Scholar]
  14. ParikhP.H. TimaniyaJ.B. PatelM.J. PatelK.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities.J. Mol. Struct.2022124913160510.1016/j.molstruc.2021.131605
    [Google Scholar]
  15. KateP. PanditV. JawaleV. BachuteM. L-Proline catalyzed one-pot three-component synthesis and evaluation for biological activities of tetrahydrobenzo[b]pyran: Evaluation by green chemistry metrics.J. Chem. Sci.20221341410.1007/s12039‑021‑01990‑7
    [Google Scholar]
  16. UrbahnsK. HorváthE. StaschJ.P. MaulerF. 4-Phenyl-4H-pyrans as IK(Ca) channel blockers.Bioorg. Med. Chem. Lett.200313162637263910.1016/S0960‑894X(03)00560‑2 12873483
    [Google Scholar]
  17. TabassumS. GovindarajuS. KhanR.R. PashaM.A. Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives.Ultrason. Sonochem.2015241710.1016/j.ultsonch.2014.12.006 25557792
    [Google Scholar]
  18. WangS. QiQ. LiC. DingG. KimS.H. Photoswitching of bisthienylethene using 2D-π-A type pyran-based fluorescent dye for rewritable optical storage.Dyes Pigments201189218819210.1016/j.dyepig.2010.09.010
    [Google Scholar]
  19. AziziN. DezfooliS. KhajehM. HashemiM.M. Efficient deep eutectic solvents catalyzed synthesis of pyran and benzopyran derivatives.J. Mol. Liq.2013186768010.1016/j.molliq.2013.05.011
    [Google Scholar]
  20. BenzekriZ. SerrarH. BoukhrisS. SallekB. SouiziA. Snail shell as a new natural and reusable catalyst for synthesis of 4H-Pyrans derivatives.Curr. Chem. Lett.2016539910810.5267/j.ccl.2016.4.001
    [Google Scholar]
  21. KhazaeiA. GholamiF. KhakyzadehV. Moosavi-ZareA.R. AfsarJ. Magnetic core–shell titanium dioxide nanoparticles as an efficient catalyst for domino Knoevenagel–Michael-cyclocondensation reaction of malononitrile, various aldehydes and dimedone.RSC Advances2015519143051431010.1039/C4RA16300A
    [Google Scholar]
  22. LuJ. FuX. ZhangG. WangC. β-Cyclodextrin as an efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in water.Res. Chem. Intermed.201642241742410.1007/s11164‑015‑2027‑0
    [Google Scholar]
  23. ShiriniF. Goli-JolodarO. AkbariM. SeddighiM. Preparation, characterization, and use of poly(vinylpyrrolidonium) hydrogen phosphate ([PVP-H]H2PO4) as a new heterogeneous catalyst for efficient synthesis of 2-amino-tetrahydro-4H-pyrans.Res. Chem. Intermed.20164254733474910.1007/s11164‑015‑2312‑y
    [Google Scholar]
  24. HarbA.F.A. HesienA.H.M. MetwallyS.A. ElnagdiM.H. Notizen/notes polyazanaphthalenes, I the reaction of ethyl 6‐amino‐5‐cyano‐4‐aryl‐2‐methyl‐4H‐pyran‐3‐carboxylate with nucleophilic reagents.Liebigs Ann. Chem.19891989658558810.1002/jlac.1989198901102
    [Google Scholar]
  25. MartinN. PascualC. SeoaneC. SotoJ. The use of some activated nitriles in heterocyclic syntheses.Heterocycles198726112811281610.3987/R‑1987‑11‑2811
    [Google Scholar]
  26. Auria-LunaF. Fernández-MoreiraV. Marqués-LópezE. GimenoM.C. HerreraR.P. Ultrasound-assisted multicomponent synthesis of 4H-pyrans in water and DNA binding studies.Sci. Rep.20201011159410.1038/s41598‑020‑68076‑1 32665694
    [Google Scholar]
  27. BretanhaL.C. TeixeiraV.E. RitterM. SiqueiraG.M. CunicoW. PereiraC.M.P. FreitagR.A. Ultrasound-promoted synthesis of 3-trichloromethyl-5-alkyl(aryl)-1,2,4-oxadiazoles.Ultrason. Sonochem.201118370470710.1016/j.ultsonch.2010.09.016 21115383
    [Google Scholar]
  28. ChtourouM. AbdelhédiR. FrikhaM.H. TrabelsiM. Solvent free synthesis of 1,3-diaryl-2-propenones catalyzed by commercial acid-clays under ultrasound irradiation.Ultrason. Sonochem.201017124624910.1016/j.ultsonch.2009.06.008 19577503
    [Google Scholar]
  29. PatilR. BhoirP. DeshpandeP. WattamwarT. ShirudeM. ChaskarP. Relevance of sonochemistry or ultrasound (US) as a proficient means for the synthesis of fused heterocycles.Ultrason. Sonochem.20132061327133610.1016/j.ultsonch.2013.04.002 23669313
    [Google Scholar]
  30. LiJ.T. LiY.W. SongY.L. ChenG.F. Improved synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives catalyzed by urea under ultrasound.Ultrason. Sonochem.20121911410.1016/j.ultsonch.2011.05.001 21622016
    [Google Scholar]
  31. MasmoudiN. ChtourouM. Green and ultrasound-assisted synthesis of 1,3-diaryl-2-propenones catalyzed by amberlyte IRA-410 and amberlyte IRA-400 basic resins.Lett. Org. Chem.202320436236910.2174/1570178620666221103105347
    [Google Scholar]
  32. LiJ.T. YinY. SunM.X. An efficient one-pot synthesis of 2,3-epoxyl-1,3-diaryl-1-propanone directly from acetophenones and aromatic aldehydes under ultrasound irradiation.Ultrason. Sonochem.201017236336610.1016/j.ultsonch.2009.09.007 19853491
    [Google Scholar]
  33. PandharpatteM.S. MulaniK.B. MohammedN.N.G. Microwave promoted, sodium acetate catalyzed one Pot synthesis of poly functionalized 4H‐pyrans.J. Chin. Chem. Soc. (Taipei)201259564564910.1002/jccs.201100304
    [Google Scholar]
  34. JadhavC.K. NipateA.S. ChateA.V. GillC.H. β‐Cyclodextrin: An efficient supramolecular catalyst for the synthesis of pyranoquinolines derivatives under ultrasonic irradiation in water.Polycycl. Aromat. Compd.20224274224423910.1080/10406638.2021.1886125
    [Google Scholar]
  35. GaoS. TsaiC.H. TsengC. YaoC.F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media.Tetrahedron200864389143914910.1016/j.tet.2008.06.061
    [Google Scholar]
  36. JinT.S. XiaoJ.C. WangS.J. LiT.S. SongX.R. An efficient and convenient approach to the synthesis of benzopyrans by a three-component coupling of one-pot reaction.Synlett20032003132001200410.1055/s‑2003‑42030
    [Google Scholar]
  37. HajipourA.R. KhorsandiZ. Application of immobilized proline on CNTs and proline ionic liquid as novel organocatalysts in the synthesis of 2-amino-4 H -pyran derivatives: A comparative study between their catalytic activities.ChemistrySelect20172288976898210.1002/slct.201700847
    [Google Scholar]
  38. ShaabaniA. SamadiS. BadriZ. RahmatiA. Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems.Catal. Lett.20051041-2394310.1007/s10562‑005‑7433‑2
    [Google Scholar]
  39. MohammadiR. EsmatiS. Gholamhosseini-NazariM. Teimuri-MofradR. Novel ferrocene substituted benzimidazolium based ionic liquid immobilized on magnetite as an efficient nano-catalyst for the synthesis of pyran derivatives.J. Mol. Liq.201927552353410.1016/j.molliq.2018.11.042
    [Google Scholar]
  40. DekaminM.G. EslamiM. MalekiA. Potassium phthalimide-N-oxyl: A novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water.Tetrahedron20136931074108510.1016/j.tet.2012.11.068
    [Google Scholar]
  41. YaghoubiA. DekaminM.G. Green and facile synthesis of 4 H -pyran scaffold catalyzed by pure nano-ordered periodic mesoporous organosilica with isocyanurate framework (PMO-ICS).ChemistrySelect20172289236924310.1002/slct.201700717
    [Google Scholar]
  42. GanguK.K. MaddilaS. MukkamalaS.B. JonnalagaddaS.B. Synthesis, structure, and properties of new Mg (II)-metal–organic framework and its prowess as catalyst in the production of 4 H-Pyrans.Ind. Eng. Chem. Res.201756112917292410.1021/acs.iecr.6b04795
    [Google Scholar]
  43. Teimuri-MofradR. Gholamhosseini-NazariM. PayamiE. EsmatiS. Ferrocene‐tagged ionic liquid stabilized on silica‐coated magnetic nanoparticles: Efficient catalyst for the synthesis of 2‐amino‐3‐cyano‐4 H ‐pyran derivatives under solvent‐free conditions.Appl. Organomet. Chem.2018321e395510.1002/aoc.3955
    [Google Scholar]
  44. LüC.W. WangJ.J. LiF. YuS.J. AnY. Efficient synthesis of 2-amino-3-cyano-4H-pyran derivatives via a non-catalytic one-pot three-component reaction.Res. Chem. Intermed.20184421035104310.1007/s11164‑017‑3151‑9
    [Google Scholar]
  45. AghajaniM. AsghariS. PashaG.F. MohseniM. Study of three-component reaction of α-ketoesters and active methylenes with OH-acids to synthesize new 2-amino-4H-pyran derivatives and evaluation of their antibacterial and antioxidant activities.Res. Chem. Intermed.20204631841185510.1007/s11164‑019‑04066‑x
    [Google Scholar]
  46. PagadalaR. MaddilaS. JonnalagaddaS.B. An efficient, multicomponent, one‐pot synthesis of tetra substituted pyrans in water.J. Heterocycl. Chem.20155241226122910.1002/jhet.2125
    [Google Scholar]
  47. KhuranaJ.M. NandB. SalujaP. 1,8‐diazabicyclo[5.4.0]undec‐7‐ene: A highly efficient catalyst for one‐pot synthesis of substituted tetrahydro‐4 H‐chromenes, tetrahydro[b]pyrans, pyrano[ d]pyrimidines, and 4 H‐pyrans in aqueous medium.J. Heterocycl. Chem.201451361862410.1002/jhet.1507
    [Google Scholar]
  48. SunW.B. ZhangP. FanJ. ChenS.H. ZhangZ.H. Lithium bromide as a mild, efficient, and recyclable catalyst for the one-pot synthesis of tetrahydro-4 H-chromene derivatives in aqueous media.Synth. Commun.201040458759410.1080/00397910903007079
    [Google Scholar]
  49. DhakarA. GoyalR. RajputA. KauravM.S. TomarV.S. AgarwalD.D. Multicomponent synthesis of 4H-pyran derivatives using KOH loaded calcium oxide as catalyst in solvent free condition.Current Chemistry Letters20198312513610.5267/j.ccl.2019.4.001
    [Google Scholar]
  50. SiddekhaA. AzzamS.H.S. PashaM.A. Ultrasound-assisted, one-pot, four-component synthesis of 1, 4, 6, 8-tetrahydroquinolines in aqueous medium.Synth. Commun.201444342443210.1080/00397911.2013.813545
    [Google Scholar]
  51. OrtizR. HerreraR. Direct substitution of alcohols in pure water by Brønsted acid catalysis.Molecules201722457410.3390/molecules22040574 28368309
    [Google Scholar]
  52. OrtizR. KoukourasA. Marqués-LópezE. HerreraR.P. Functionalization of π-activated alcohols by trapping carbocations in pure water under smooth conditions.Arab. J. Chem.20201311866187310.1016/j.arabjc.2018.01.022
    [Google Scholar]
  53. GoudaM. LiOH.H 2 O as a catalyst for Knoevenagel and Gewald reactions.Pol. J. Chem. Technol.2010124313510.2478/v10026‑010‑0046‑6
    [Google Scholar]
  54. AndoK. IsomuraW. UchidaN. MoriK. Highly E-selective solvent-free horner-wadsworth-emmons reaction for the synthesis of α-methyl-α,β-unsaturated esters using either LiOH·H2O or Ba(OH)2·8H2O.Bull. Chem. Soc. Jpn.202295692893410.1246/bcsj.20220052
    [Google Scholar]
  55. LiuY. WeiZ. LiuY. WangJ. CaoJ. LiangD. DuanH. LinY. Chiral phase-transfer catalysts bearing multiple hydrogen-bonding donors derived from amino acids: Efficient catalysts for diastereo- and enantioselective nitro-mannich reaction.Chem. Res. Chin. Univ.201834333333710.1007/s40242‑018‑8005‑5
    [Google Scholar]
  56. GoudaM. LiOH. H2O as a catalyst for Claisen Schmidt reaction: Synthesis of tetrazole derivatives under ultrasound irradiation.Indian J. Heterocycl. Chem.20223212328
    [Google Scholar]
  57. MagyarÁ. HellZ. One-pot, three-component, selective synthesis of the polyfunctionalized 4H-pyran and 4H-benzo[b]pyran derivatives in the presence of a highly efficient molecular sieve-supported zinc catalyst.Green Processing and Synthesis20187431632210.1515/gps‑2017‑0083
    [Google Scholar]
  58. CiocR.C. RuijterE. OrruR.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis.Green Chem.20141662958297510.1039/C4GC00013G
    [Google Scholar]
  59. PirrungM.C. SarmaK.D. Multicomponent reactions are accelerated in water.J. Am. Chem. Soc.2004126244444510.1021/ja038583a 14719923
    [Google Scholar]
  60. ChtourouM. LahyaniA. TrabelsiM. Alkaline–modified montmorillonite K10: An efficient catalyst for green condensation reaction of aromatic aldehydes with active methylene compounds.React. Kinet. Mech. Catal.2019126123724710.1007/s11144‑018‑1495‑9
    [Google Scholar]
  61. GazitA. YaishP. GilonC. LevitzkiA. TyrphostinsI. Synthesis and biological activity of protein tyrosine kinase inhibitors.J. Med. Chem.198932102344235210.1021/jm00130a020 2552117
    [Google Scholar]
  62. BhattacharyyaP. PradhanK. PaulS. DasA.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media.Tetrahedron Lett.201253354687469110.1016/j.tetlet.2012.06.086
    [Google Scholar]
  63. HakimiF. EtemadinejadF. BanitabaH. Synthesis of nano-silica sulfamic acid-catalyzed dihydropyran derivatives in water solvent and ambient temperature.J. Org. Chem.2022127181
    [Google Scholar]
  64. HassanH.M.A. ElshaarawyR.F.M. DeyS.K. SimonI. JaniakC. Microwave-assisted hydrothermal fabrication of magnetic amino-grafted graphene oxide nanocomposite as a heterogeneous knoevenagel catalyst.Catal. Lett.201714781998200510.1007/s10562‑017‑2120‑7
    [Google Scholar]
  65. ShrikhandeJ.J. GawandeM.B. JayaramR.V. Cross-aldol and Knoevenagel condensation reactions in aqueous micellar media.Catal. Commun.2008961010101610.1016/j.catcom.2007.10.001
    [Google Scholar]
  66. Rajasekhar PullabhotlaV.S.R. RahmanA. JonnalagaddaS.B. Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: An environmentally benign approach.Catal. Commun.200910436536910.1016/j.catcom.2008.09.021
    [Google Scholar]
  67. ValvekensP. VandichelM. WaroquierM. Van SpeybroeckV. De VosD. Metal-dioxidoterephthalate MOFs of the MOF-74 type: Microporous basic catalysts with well-defined active sites.J. Catal.201431711010.1016/j.jcat.2014.06.006
    [Google Scholar]
  68. MoussaouiY. Ben SalemR. Catalyzed Knoevenagel reactions on inorganic solid supports: Application to the synthesis of coumarine compounds.C. R. Chim.200710121162116910.1016/j.crci.2007.08.007
    [Google Scholar]
  69. PostoleG. ChowdhuryB. KarmakarB. PinkiK. BanerjiJ. AurouxA. Knoevenagel condensation reaction over acid–base bifunctional nanocrystalline Ce Zr1−O2 solid solutions.J. Catal.2010269111012110.1016/j.jcat.2009.10.022
    [Google Scholar]
  70. AmmarH.B. ChtourouM. FrikhaM.H. TrabelsiM. Green condensation reaction of aromatic aldehydes with active methylene compounds catalyzed by anion-exchange resin under ultrasound irradiation.Ultrason. Sonochem.20152255956410.1016/j.ultsonch.2014.07.018 25112685
    [Google Scholar]
  71. SánchezA. HernándezF. CruzP.C. AlcarazY. TamarizJ. DelgadoF. VázquezM.A. Infrared irradiation-assisted multicomponent synthesis of 2-amino-3-cyano-4H-pyran derivatives.J. Mex. Chem. Soc.2012562121127
    [Google Scholar]
  72. YangZ.J. GongQ.T. WangY. YuY. LiuY.H. WangN. YuX.Q. Biocatalytic tandem multicomponent reactions for one-pot synthesis of 2-Amino-4H-Pyran library and in vitro biological evaluation.Molecular Catalysis202049111098310.1016/j.mcat.2020.110983
    [Google Scholar]
  73. KhanM.M. Saigal; Khan, S. One‐Pot Knoevenagel–Michael–Cyclization cascade reaction for the synthesis of functionalized novel 4 H ‐pyrans by using ZnCl 2 as a catalyst.J. Heterocycl. Chem.20195631020102910.1002/jhet.3486
    [Google Scholar]
  74. Safaei-GhomiJ. TeymuriR. Shahbazi-AlaviH. ZiaratiA. SnCl2/nano SiO2: A green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans.Chin. Chem. Lett.2013241092192510.1016/j.cclet.2013.06.021
    [Google Scholar]
  75. TavakolH. KeshavarzipourF. Preparation of choline chloride–urea deep eutectic solvent‐modified magnetic nanoparticles for synthesis of various 2‐amino‐4 H ‐pyran derivatives in water solution.Appl. Organomet. Chem.20173111e381110.1002/aoc.3811
    [Google Scholar]
  76. ZhangM. FuQ.Y. GaoG. HeH.Y. ZhangY. WuY.S. ZhangZ.H. Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate.ACS Sustain. Chem. Eng.2017576175618210.1021/acssuschemeng.7b01102
    [Google Scholar]
  77. ZhangM. ChenM.N. ZhangZ.H. Visible light‐initiated catalyst‐free one‐pot, multicomponent construction of 5‐substituted indole chromeno[2,3‐ b]pyridines.Adv. Synth. Catal.2019361225182519010.1002/adsc.201900994
    [Google Scholar]
/content/journals/cos/10.2174/0115701794351667241112071850
Loading
/content/journals/cos/10.2174/0115701794351667241112071850
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 4H-pyrans; cyclocondensation; LiOH·H2O; multi-components; ultrasound; water
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test