Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

The biopolymer chitosan, which is derived from chitin, has shown great promise for tissue regeneration and regulated drug delivery. Its broad-spectrum antibacterial action, low toxicity, biocompatibility, and many other attributes make it appealing for use in biomedical applications. Crucially, chitosan may be synthesized into a range of forms that can be customized to provide desired results, such as hydrogels, membranes, scaffolds, and nanoparticles. Hydrogels that are biocompatible and self-healing are innovative soft materials with considerable potential for use in biomedical applications. Hydrogels that self-heal using chitosan, which are mostly made by dynamic imine linkages, have gained a lot of interest because of their great biocompatibility, moderate preparation requirements, and capacity to mend themselves in a physiological setting. In this study, a summary of the applications of chitosan-based self-healing hydrogels in bone, cartilage, and tooth tissue regeneration and drug delivery is provided. Lastly, we have mentioned the difficulties and potential outcomes for the biomedical field's creation of hydrogels based on chitosan that can mend themselves.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794307242240612075648
2024-07-03
2025-09-03
Loading full text...

Full text loading...

References

  1. SeliktarD. Designing cell-compatible hydrogels for biomedical applications.Science201233660851124112810.1126/science.1214804 22654050
    [Google Scholar]
  2. KoD.Y. ShindeU.P. YeonB. JeongB. Recent progress of in situ formed gels for biomedical applications.Prog. Polym. Sci.2013383-467270110.1016/j.progpolymsci.2012.08.002
    [Google Scholar]
  3. AtmacaH. OguzF. IlhanS. Drug delivery systems for cancer treatment: a review of marine-derived polysaccharides.Curr. Pharm. Des.202228131031104510.2174/1381612828666220211153931 35152862
    [Google Scholar]
  4. BabuC.K. Shubhra; Ghouse, S.M.; Singh, P.K.; Khatri, D.K.; Nanduri, S.; Singh, S.B.; Madan, J. Luliconazole topical dermal drug delivery for superficial fungal infections: Penetration hurdles and role of functional nanomaterials.Curr. Pharm. Des.202228201611162010.2174/1381612828666220623095743 35747957
    [Google Scholar]
  5. ChopraH. GandhiS. GautamR.K. KamalM.A. Bacterial nanocellulose based wound dressings: current and future prospects.Curr. Pharm. Des.202228757058010.2174/1381612827666211021162828 34674616
    [Google Scholar]
  6. GirijaA.R. BalasubramanianS. CowinA.J. Nanomaterials-based drug delivery approaches for wound healing.Curr. Pharm. Des.202228971172610.2174/1381612828666220328121211 35345993
    [Google Scholar]
  7. JayachandranV. MuruganS.S. DalaviP.A. Gurushanthappa VishalakshiY.D. SeongG.H. Alginate-based Composite Microspheres: Preparations and Applications for Bone Tissue Engineering.Curr. Pharm. Des.202228131067108110.2174/1381612828666220518142911 35593346
    [Google Scholar]
  8. KumarM. MahmoodS. MandalU.K. An updated account on formulations and strategies for the treatment of burn infection-a review.Curr. Pharm. Des.202228181480149210.2174/1381612828666220519145859 35598231
    [Google Scholar]
  9. ChenC. ZhaoY. LeX. GaoT. WangL. WeiF. Self-assembly of short amphiphilic peptides and their biomedical applications.Curr. Pharm. Des.202228443546356210.2174/1381612829666221124103526 36424793
    [Google Scholar]
  10. MannaS. JanaS. Marine polysaccharides in tailor-made drug delivery.Curr. Pharm. Des.202228131046106610.2174/1381612828666220328122539 35345994
    [Google Scholar]
  11. SolimanA.M. TeohS.L. DasS. Fish Gelatin: Current Nutritional, Medicinal, Tissue Repair Applications, and as a Carrier of Drug Delivery.Curr. Pharm. Des.202228121019103010.2174/1381612828666220128103725 35088658
    [Google Scholar]
  12. ZielińskaA. EderP. RannierL. CardosoJ.C. SeverinoP. SilvaA.M. SoutoE.B. Hydrogels for modified-release drug delivery systems.Curr. Pharm. Des.202228860961810.2174/1381612828666211230114755 34967292
    [Google Scholar]
  13. SivashanmugamA. Arun KumarR. Vishnu PriyaM. NairS.V. JayakumarR. An overview of injectable polymeric hydrogels for tissue engineering.Eur. Polym. J.20157254356510.1016/j.eurpolymj.2015.05.014
    [Google Scholar]
  14. WilsonB. Mohamed AlobaidB.N. GeethaK.M. JenitaJ.L. Chitosan nanoparticles to enhance nasal absorption and brain targeting of sitagliptin to treat Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20216110217610.1016/j.jddst.2020.102176
    [Google Scholar]
  15. WeiZ. YangJ.H. ZhouJ. XuF.; Zrínyi, M.; Dussault, P.H.; Osada, Y.; Chen, Y.M. Self-healing gels based on constitutional dynamic chemistry and their potential applications.Chem. Soc. Rev.201443238114813110.1039/C4CS00219A 25144925
    [Google Scholar]
  16. YesilyurtV. WebberM.J. AppelE.A. GodwinC. LangerR. AndersonD.G. Injectable self‐healing glucose‐responsive hydrogels with pH‐regulated mechanical properties.Adv. Mater.2016281869110.1002/adma.201502902 26540021
    [Google Scholar]
  17. DengC.C. BrooksW.L.A. AbboudK.A. SumerlinB.S. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH.ACS Macro Lett.20154222022410.1021/acsmacrolett.5b00018 35596411
    [Google Scholar]
  18. De KokerS. CuiJ. VanparijsN. AlbertazziL. GrootenJ. CarusoF. De GeestB.G. Engineering polymer hydrogel nanoparticles for lymph node‐targeted delivery.Angew. Chem. Int. Ed.20165541334133910.1002/anie.201508626 26666207
    [Google Scholar]
  19. CasusoP. OdriozolaI. Pérez-San VicenteA. LoinazI. Cabañero, G.; Grande, H.J.; Dupin, D. Injectable and self-healing dynamic hydrogels based on metal (I)-thiolate/disulfide exchange as biomaterials with tunable mechanical properties.Biomacromolecules201516113552356110.1021/acs.biomac.5b00980 26418440
    [Google Scholar]
  20. YangX. LiuG. PengL. GuoJ. TaoL. YuanJ. ChangC. WeiY. ZhangL. Highly efficient self‐healable and dual responsive cellulose‐based hydrogels for controlled release and 3D cell culture.Adv. Funct. Mater.20172740170317410.1002/adfm.201703174
    [Google Scholar]
  21. WhitakerD.E. MahonC.S. FultonD.A. Thermoresponsive dynamic covalent single-chain polymer nanoparticles reversibly transform into a hydrogel.Angew. Chem. Int. Ed.201352395695910.1002/anie.201207953 23225748
    [Google Scholar]
  22. YangY. ZhangJ. LiuZ. LinQ. LiuX. BaoC. WangY. ZhuL. Tissue‐integratable and biocompatible photogelation by the imine crosslinking reaction.Adv. Mater.201628142724273010.1002/adma.201505336 26840751
    [Google Scholar]
  23. KarimiA.R. KhodadadiA. Mechanically robust 3D nanostructure chitosan-based hydrogels with autonomic self-healing properties.ACS Appl. Mater. Interfaces2016840272542726310.1021/acsami.6b10375 27643708
    [Google Scholar]
  24. LiL. WangN. JinX. DengR. NieS. SunL. WuQ. WeiY. GongC. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention.Biomaterials201435123903391710.1016/j.biomaterials.2014.01.050 24507411
    [Google Scholar]
  25. XuY. LiY. ChenQ. FuL. TaoL. WeiY. Injectable and self-healing chitosan hydrogel based on imine bonds: design and therapeutic applications.Int. J. Mol. Sci.2018198219810.3390/ijms19082198 30060504
    [Google Scholar]
  26. IslamM.M. ShahruzzamanM. BiswasS. Nurus SakibM. RashidT.U. Chitosan based bioactive materials in tissue engineering applications-A review.Bioact. Mater.20205116418310.1016/j.bioactmat.2020.01.012 32083230
    [Google Scholar]
  27. KouS.G. PetersL.M. MucaloM.R. Chitosan: A review of sources and preparation methods.Int. J. Biol. Macromol.2021169859410.1016/j.ijbiomac.2020.12.005 33279563
    [Google Scholar]
  28. AbourehabM.A.S. PramanikS. AbdelgawadM.A. AbualsoudB.M. KadiA. AnsariM.J. DeepakA. Recent advances of chitosan formulations in biomedical applications.Int. J. Mol. Sci.202223181097510.3390/ijms231810975 36142887
    [Google Scholar]
  29. AtiaG.A.N. ShalabyH.K. ZehraviM. GhobashyM.M. AttiaH.A.N. AhmadZ. KhanF.S. DeyA. MukerjeeN. AlexiouA. RahmanM.H. KlepackaJ. NajdaA. Drug-Loaded Chitosan Scaffolds for Periodontal Tissue Regeneration.Polymers (Basel)20221415319210.3390/polym14153192 35956708
    [Google Scholar]
  30. TangG. TanZ. ZengW. WangX. ShiC. LiuY. HeH. ChenR. YeX. Recent advances of chitosan-based injectable hydrogels for bone and dental tissue regeneration.Front. Bioeng. Biotechnol.2020858765810.3389/fbioe.2020.587658 33042982
    [Google Scholar]
  31. WanM. QinW. LeiC. LiQ. MengM. FangM. SongW. ChenJ. TayF. NiuL. Biomaterials from the sea: Future building blocks for biomedical applications.Bioact. Mater.20216124255428510.1016/j.bioactmat.2021.04.028 33997505
    [Google Scholar]
  32. Chitosan as a natural copolymer with unique properties for the development of hydrogels.Appl. Sci. (Basel)2019911219310.3390/app9112193
    [Google Scholar]
  33. ChoiA.H. Ben-NissanB. Marine-derived biomaterials for tissue engineering applications.Springer2019Vol. 1410.1007/978‑981‑13‑8855‑2_17
    [Google Scholar]
  34. LavanyaK. ChandranS.V. BalagangadharanK. SelvamuruganN. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering.Mater. Sci. Eng. C202011111086210.1016/j.msec.2020.110862 32279825
    [Google Scholar]
  35. KimY. ZharkinbekovZ. RaziyevaK. TabyldiyevaL. BerikovaK. ZhumagulD. TemirkhanovaK. SaparovA. Chitosan-Based Biomaterials for Tissue Regeneration.Pharmaceutics202315380710.3390/pharmaceutics15030807 36986668
    [Google Scholar]
  36. LangX. WangT. SunM. ChenX. LiuY. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review.Int. J. Biol. Macromol.202015443344510.1016/j.ijbiomac.2020.03.148 32194103
    [Google Scholar]
  37. ShanmuganathanR. EdisonT.N.J.I. LewisOscar, F.; Kumar, P.; Shanmugam, S.; Pugazhendhi, A. Chitosan nanopolymers: An overview of drug delivery against cancer.Int. J. Biol. Macromol.201913072773610.1016/j.ijbiomac.2019.02.060 30771392
    [Google Scholar]
  38. KulkarniN. JainP. ShindikarA. SuryawanshiP. ThoratN. Advances in the colon-targeted chitosan based multiunit drug delivery systems for the treatment of inflammatory bowel disease.Carbohydr. Polym.202228811935110.1016/j.carbpol.2022.119351 35450623
    [Google Scholar]
  39. SultankulovB. BerilloD. KauanovaS. MikhalovskyS. MikhalovskaL. SaparovA. Composite cryogel with polyelectrolyte complexes for growth factor delivery.Pharmaceutics2019111265010.3390/pharmaceutics11120650 31817064
    [Google Scholar]
  40. JiaoJ. HuangJ. ZhangZ. Hydrogels based on chitosan in tissue regeneration: How do they work? A mini review.J. Appl. Polym. Sci.2019136134723510.1002/app.47235
    [Google Scholar]
  41. PahlevanzadehF. EmadiR. ValianiA. KharazihaM. PoursamarS.A. Bakhsheshi-RadH.R. IsmailA.F. RamaKrishna, S.; Berto, F. Three-dimensional printing constructs based on the chitosan for tissue regeneration: State of the art, developing directions and prospect trends.Materials (Basel)20201311266310.3390/ma13112663 32545256
    [Google Scholar]
  42. ShenY. XuY. YiB. WangX. TangH. ChenC. ZhangY. Engineering a highly biomimetic chitosan-based cartilage scaffold by using short fibers and a cartilage-decellularized matrix.Biomacromolecules20212252284229710.1021/acs.biomac.1c00366 33913697
    [Google Scholar]
  43. MansouriR. JouanY. HayE. Blin-WakkachC. FrainM. OstertagA. Le HenaffC. MartyC. GeoffroyV. MarieP.J. Cohen-SolalM. ModrowskiD. Osteoblastic heparan sulfate glycosaminoglycans control bone remodeling by regulating Wnt signaling and the crosstalk between bone surface and marrow cells.Cell Death Dis.201786e2902e290210.1038/cddis.2017.287 28661485
    [Google Scholar]
  44. JiangY. FuC. WuS. LiuG. GuoJ. SuZ. Determination of the deacetylation degree of chitooligosaccharides.Mar. Drugs2017151133210.3390/md15110332 29068401
    [Google Scholar]
  45. LvS. High-performance superplasticizer based on chitosan. Biopolymers and biotech admixtures for eco-efficient construction materials.Elsevier201613115010.1016/B978‑0‑08‑100214‑8.00007‑5
    [Google Scholar]
  46. ResslerA. Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review.Polymers (Basel)20221416343010.3390/polym14163430 36015686
    [Google Scholar]
  47. ColaçoE. BrouriD. AissaouiN. CornetteP. DupresV. DomingosR.F. LambertJ.F. MaisonhauteE. KiratK.E. LandoulsiJ. Hierarchical Collagen–Hydroxyapatite Nanostructures Designed through Layer-by-Layer Assembly of Crystal-Decorated Fibrils.Biomacromolecules201920124522453410.1021/acs.biomac.9b01299 31710810
    [Google Scholar]
  48. Yilmaz AtayH. Antibacterial activity of chitosan-based systems.Functional Chitosan.2019457489published online 2020 Mar, 6.10.1007/978‑981‑15‑0263‑7_15
    [Google Scholar]
  49. FelgueirasH. Fundamentals of protein and cell interactions in biomaterials. Peptides and proteins as biomaterials for tissue regeneration and repair.Elsevier201812710.1016/B978‑0‑08‑100803‑4.00001‑2
    [Google Scholar]
  50. XiaB. DengY. LvY. ChenG. Stem cell recruitment based on scaffold features for bone tissue engineering.Biomater. Sci.2021941189120310.1039/D0BM01591A 33355545
    [Google Scholar]
  51. KimU.J. LeeY.R. KangT.H. ChoiJ.W. KimuraS. WadaM. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents.Carbohydr. Polym.2017163344210.1016/j.carbpol.2017.01.052 28267516
    [Google Scholar]
  52. BabuA. RameshR. Multifaceted applications of chitosan in cancer drug delivery and therapy.Mar. Drugs20171549610.3390/md15040096 28346381
    [Google Scholar]
  53. RosetiL. ParisiV. PetrettaM. CavalloC. DesandoG. BartolottiI. GrigoloB. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.Mater. Sci. Eng. C2017781246126210.1016/j.msec.2017.05.017 28575964
    [Google Scholar]
  54. ZhuG. ZhangT. ChenM. YaoK. HuangX. ZhangB. LiY. LiuJ. WangY. ZhaoZ. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds.Bioact. Mater.20216114110414010.1016/j.bioactmat.2021.03.043 33997497
    [Google Scholar]
  55. BružauskaitėI. BironaitėD. BagdonasE. BernotienėE. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects.Cytotechnology201668335536910.1007/s10616‑015‑9895‑4 26091616
    [Google Scholar]
  56. DebP. DeoghareA.B. BorahA. BaruaE. Das LalaS. Scaffold development using biomaterials: a review.Mater. Today Proc.201855129091291910.1016/j.matpr.2018.02.276
    [Google Scholar]
  57. ZhouD. QiC. ChenY.X. ZhuY.J. SunT.W. ChenF. ZhangC.Q. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects.Int. J. Nanomedicine2017122673268710.2147/IJN.S131251 28435251
    [Google Scholar]
  58. PitrolinoK.A. FelfelR.M. PellizzeriL.M. McLarenJ. PopovA.A. SottileV. ScotchfordC.A. ScammellB.E. RobertsG.A.F. GrantD.M. Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold.Carbohydr. Polym.202228211912610.1016/j.carbpol.2022.119126 35123750
    [Google Scholar]
  59. ResslerA. AntunovićM. Teruel-BioscaL. FerrerG.G. BabićS. UrlićI. IvankovićM. IvankovićH. Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold.Carbohydr. Polym.202227711888310.1016/j.carbpol.2021.118883 34893286
    [Google Scholar]
  60. JacobJ. MoreN. KaliaK. KapusettiG. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.Inflamm. Regen.2018381210.1186/s41232‑018‑0059‑8 29497465
    [Google Scholar]
  61. TurnbullG. ClarkeJ. PicardF. RichesP. JiaL. HanF. LiB. ShuW. 3D bioactive composite scaffolds for bone tissue engineering.Bioact. Mater.20183327831410.1016/j.bioactmat.2017.10.001 29744467
    [Google Scholar]
  62. PrzekoraA. PalkaK. GinalskaG. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration — A comparative study.Mater. Sci. Eng. C20165889189910.1016/j.msec.2015.09.046 26478384
    [Google Scholar]
  63. RoginaA. Pribolšn, L.; Hanžek, A.; Gόmez-Estrada, L.; Gallego Ferrer, G.; Marijanović, I.; Ivanković, M.; Ivanković, H. Macroporous poly(lactic acid) construct supporting the osteoinductive porous chitosan-based hydrogel for bone tissue engineering.Polymer20169817218110.1016/j.polymer.2016.06.030
    [Google Scholar]
  64. JenningsJ.A. Controlling chitosan degradation properties in vitro and in vivo.Chitosan Based Biomaterials.Elsevier2017Vol. 115918210.1016/B978‑0‑08‑100230‑8.00007‑8
    [Google Scholar]
  65. HuJ. HouY. ParkH. ChoiB. HouS. ChungA. LeeM. Visible light crosslinkable chitosan hydrogels for tissue engineering.Acta Biomater.2012851730173810.1016/j.actbio.2012.01.029 22330279
    [Google Scholar]
  66. ParkH. ChoiB. HuJ. LeeM. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering.Acta Biomater.2013914779478610.1016/j.actbio.2012.08.033 22935326
    [Google Scholar]
  67. TaghizadehM. TaghizadehA. YazdiM.K. ZarrintajP. StadlerF.J. RamseyJ.D. HabibzadehS. Hosseini RadS. NaderiG. SaebM.R. MozafariM. SchubertU.S. Chitosan-based inks for 3D printing and bioprinting.Green Chem.20222416210110.1039/D1GC01799C
    [Google Scholar]
  68. YadavL.R. ChandranS.V. LavanyaK. SelvamuruganN. Chitosan-based 3D-printed scaffolds for bone tissue engineering.Int. J. Biol. Macromol.20211831925193810.1016/j.ijbiomac.2021.05.215 34097956
    [Google Scholar]
  69. RajabiM. McConnellM. CabralJ. AliM.A. Chitosan hydrogels in 3D printing for biomedical applications.Carbohydr. Polym.202126011776810.1016/j.carbpol.2021.117768 33712126
    [Google Scholar]
  70. CapuanaE. LoprestiF.; Carfì Pavia, F.; Brucato, V.; La Carrubba, V. Solution-based processing for scaffold fabrication in tissue engineering applications: A brief review.Polymers 20211313204110.3390/polym13132041 34206515
    [Google Scholar]
  71. LevengoodS.K.L. ZhangM. Chitosan-based scaffolds for bone tissue engineering.J. Mater. Chem. B Mater. Biol. Med.20142213161318410.1039/c4tb00027g 24999429
    [Google Scholar]
  72. a AnisieiA. OanceaF. MarinL. Electrospinning of chitosan-based nanofibers: from design to prospective applications.Rev. Chem. Eng.2023391317010.1515/revce‑2021‑0003
    [Google Scholar]
  73. b HomayoniH. S.A.H.Ravandi M.Valizadeh Electrospinning of chitosan nanofibers: Processing optimization.Carbohydrate polymers,2009773p. 65666110.1515/revce‑2021‑0003
    [Google Scholar]
  74. DingC.C. TengS.H. PanH. In-situ generation of chitosan/hydroxyapatite composite microspheres for biomedical application.Mater. Lett.201279727410.1016/j.matlet.2012.03.092
    [Google Scholar]
  75. FangJ. ZhangY. YanS. LiuZ. HeS. CuiL. YinJ. Poly(l-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration.Acta Biomater.201410127628810.1016/j.actbio.2013.09.002 24025620
    [Google Scholar]
  76. WangD. WangM. WangA. LiJ. LiX. JianH. BaiS. YinJ. Preparation of collagen/chitosan microspheres for 3D macrophage proliferation in vitro.Colloids Surf. A Physicochem. Eng. Asp.201957226627310.1016/j.colsurfa.2019.04.007
    [Google Scholar]
  77. LončarevićA. IvankovićM. RoginaA. Electrosprayed chitosan–copper complex microspheres with uniform size.Materials 20211419563010.3390/ma14195630 34640029
    [Google Scholar]
  78. RoginaA. VidovićD. AntunovićM. IvankovićM. IvankovićH. Metal ion-assisted formation of porous chitosan-based microspheres for biomedical applications.Int. J. Polym. Mater.202170141027103510.1080/00914037.2020.1776283
    [Google Scholar]
  79. XuF. WuY. ZhangY. YinP. FangC. WangJ. Influence of in vitro differentiation status on the in vivo bone regeneration of cell/chitosan microspheres using a rat cranial defect model.J. Biomater. Sci. Polym. Ed.201930121008102510.1080/09205063.2019.1619959 31159676
    [Google Scholar]
  80. BiY. LinZ. DengS. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering.Mater. Sci. Eng. C201910057658310.1016/j.msec.2019.03.040 30948094
    [Google Scholar]
  81. GuoZ. BoD. HeY. LuoX. LiH. Degradation properties of chitosan microspheres/poly(L-lactic acid) composite in vitro and in vivo.Carbohydr. Polym.20181931810.1016/j.carbpol.2018.03.067 29773361
    [Google Scholar]
  82. GasperiniL. ManoJ.F. ReisR.L. Natural polymers for the microencapsulation of cells.J. R. Soc. Interface2014111002014081710.1098/rsif.2014.0817 25232055
    [Google Scholar]
  83. WuJ. ZhouT. LiuJ. WanY. Injectable chitosan/dextran-polylactide/glycerophosphate hydrogels and their biodegradation.Polym. Degrad. Stabil.201512027328210.1016/j.polymdegradstab.2015.07.018
    [Google Scholar]
  84. RoginaA. ResslerA. MatićI. Gallego FerrerG. MarijanovićI. IvankovićM. IvankovićH. Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system.Carbohydr. Polym.201716617318210.1016/j.carbpol.2017.02.105 28385221
    [Google Scholar]
  85. Pellá M.C.G.; Lima-Tenóَrio, M.K.; Tenóَrio-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-based hydrogels: From preparation to biomedical applications.Carbohydr. Polym.201819623324510.1016/j.carbpol.2018.05.033 29891292
    [Google Scholar]
  86. HamediH. MoradiS. HudsonS.M. TonelliA.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review.Carbohydr. Polym.201819944546010.1016/j.carbpol.2018.06.114 30143150
    [Google Scholar]
  87. OuY. TianM. Advances in multifunctional chitosan-based self-healing hydrogels for biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20219387955797110.1039/D1TB01363G 34611684
    [Google Scholar]
  88. XiaoC. YouR. FanY. ZhangY. Tunable functional hydrogels formed from a versatile water-soluble chitosan.Int. J. Biol. Macromol.20168538639010.1016/j.ijbiomac.2016.01.006 26772916
    [Google Scholar]
  89. ZhangY. TaoL. LiS. WeiY. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules.Biomacromolecules20111282894290110.1021/bm200423f 21699141
    [Google Scholar]
  90. HuangW. WangY. ChenY. ZhaoY. ZhangQ. ZhengX. ChenL. ZhangL. Strong and rapidly self‐healing hydrogels: Potential hemostatic materials.Adv. Healthc. Mater.20165212813282210.1002/adhm.201600720 27717239
    [Google Scholar]
  91. CaoL. CaoB. LuC. WangG. YuL. DingJ. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering.J. Mater. Chem. B Mater. Biol. Med.2015371268128010.1039/C4TB01705F 32264478
    [Google Scholar]
  92. YeoY.H. ParkW.H. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels.Carbohydr. Polym.202125811770510.1016/j.carbpol.2021.117705 33593575
    [Google Scholar]
  93. AguilarA. ZeinN. HarmouchE. HafdiB. BornertF. OffnerD. ClaussF. FiorettiF. HuckO. Benkirane-JesselN. HuaG. Application of chitosan in bone and dental engineering.Molecules20192416300910.3390/molecules24163009 31431001
    [Google Scholar]
  94. TaoF. ChengY. ShiX. ZhengH. DuY. XiangW. DengH. Applications of chitin and chitosan nanofibers in bone regenerative engineering.Carbohydr. Polym.202023011565810.1016/j.carbpol.2019.115658 31887899
    [Google Scholar]
  95. OgayV. MunE.A. KudaibergenG. BaidarbekovM. KassymbekK. ZharkinbekovZ. SaparovA. Progress and prospects of polymer-based drug delivery systems for bone tissue regeneration.Polymers 20201212288110.3390/polym12122881 33271770
    [Google Scholar]
  96. ZhaoY. ZhaoS. MaZ. DingC. ChenJ. LiJ. Chitosan-based scaffolds for facilitated endogenous bone re-generation.Pharmaceuticals2022158102310.3390/ph15081023 36015171
    [Google Scholar]
  97. YeH. ZhuJ. DengD. JinS. LiJ. ManY. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration.J. Biomater. Sci. Polym. Ed.201930161505152210.1080/09205063.2019.1646628 31322979
    [Google Scholar]
  98. JinS. LiJ. WangJ. JiangJ. ZuoY. LiY. YangF. Electrospun silver ion-loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration.Int. J. Nanomedicine2018134591460510.2147/IJN.S167793 30127608
    [Google Scholar]
  99. EzatiM. SafavipourH. HoushmandB. FaghihiS. Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration.Prog. Biomater.20187322523710.1007/s40204‑018‑0098‑x 30242739
    [Google Scholar]
  100. HuangY. JiY. KangZ. LiF. GeS. YangD-P. RuanJ. FanX. Integrating eggshell-derived CaCO3/MgO nanocomposites and chitosan into a biomimetic scaffold for bone regeneration.Chem. Eng. J.202039512509810.1016/j.cej.2020.125098
    [Google Scholar]
  101. BakopoulouA. GeorgopoulouA. GrivasI. BekiariC. PrymakO. LozaK. EppleM. PapadopoulosG.C. KoidisP. ChatzinikolaidouM. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration.Dent. Mater.201935231032710.1016/j.dental.2018.11.025 30527589
    [Google Scholar]
  102. GeorgopoulouA. PapadogiannisF. BatsaliA. MarakisJ. AlpantakiK. EliopoulosA.G. PontikoglouC. ChatzinikolaidouM. Chitosan/gelatin scaffolds support bone regeneration.J. Mater. Sci. Mater. Med.20182955910.1007/s10856‑018‑6064‑2 29730855
    [Google Scholar]
  103. LeeS.J. NahH. HeoD.N. KimK-H. SeokJ.M. HeoM. MoonH.J. LeeD. LeeJ.S. AnS.Y. HwangY.S. KoW.K. KimS.J. SohnS. ParkS.A. ParkS.Y. KwonI.K. Induction of osteogenic differentiation in a rat calvarial bone defect model using an in vivo forming graphene oxide incorporated glycol chitosan/oxidized hyaluronic acid injectable hydrogel.Carbon202016826427710.1016/j.carbon.2020.05.022
    [Google Scholar]
  104. TaoJ. ZhangY. ShenA. YangY. DiaoL. WangL. CaiD. HuY. Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis.Int. J. Nanomedicine2020155855587110.2147/IJN.S247088 32848394
    [Google Scholar]
  105. PetitC. BatoolF. StutzC. AntonN. KlymchenkoA. VandammeT. Benkirane-JesselN. HuckO. Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing.Int. J. Pharm.202058611953410.1016/j.ijpharm.2020.119534 32531451
    [Google Scholar]
  106. CuiZ.K. KimS. BaljonJ.J. WuB.M. AghalooT. LeeM. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering.Nat. Commun.2019101352310.1038/s41467‑019‑11511‑3 31388014
    [Google Scholar]
  107. TamburaciS. TihminliogluF. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration.Mater. Sci. Eng. C202112811229810.1016/j.msec.2021.112298 34474849
    [Google Scholar]
  108. Masoudi RadM. Nouri KhorasaniS. Ghasemi-MobarakehL. PrabhakaranM.P. ForoughiM.R. KharazihaM. SaadatkishN. RamakrishnaS. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application.Mater. Sci. Eng. C201780758710.1016/j.msec.2017.05.125 28866225
    [Google Scholar]
  109. GovindasamyK. DahlanN.A. JanarthananP. GohK.L. ChaiS-P. PasbakhshP. Electrospun chitosan/polyethylene-oxide (PEO)/halloysites (HAL) membranes for bone regeneration applications.Appl. Clay Sci.202019010560110.1016/j.clay.2020.105601
    [Google Scholar]
  110. AhmadiS. HivechiA. BahramiS.H. MilanP.B. AshrafS.S. Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity.Int. J. Biol. Macromol.202117358059010.1016/j.ijbiomac.2021.01.156 33513421
    [Google Scholar]
  111. ZhuJ. YeH. DengD. LiJ. WuY. Electrospun metformin-loaded polycaprolactone/chitosan nanofibrous membranes as promoting guided bone regeneration membranes: Preparation and characterization of fibers, drug release, and osteogenic activity in vitro.J. Biomater. Appl.20203491282129310.1177/0885328220901807 31964207
    [Google Scholar]
  112. SuH. FujiwaraT. AndersonK.M. KarydisA. GhadriM.N. BumgardnerJ.D. A comparison of two types of electrospun chitosan membranes and a collagen membrane in vivo.Dent. Mater.2021371607010.1016/j.dental.2020.10.011 33208266
    [Google Scholar]
  113. GuoS. HeL. YangR. ChenB. XieX. JiangB. WeidongT. DingY. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration.J. Biomater. Sci. Polym. Ed.202031215516810.1080/09205063.2019.1680927 31710268
    [Google Scholar]
  114. MacfarlaneE. SeibelM.J. ZhouH. Arthritis and the role of endogenous glucocorticoids.Bone Res.2020813310.1038/s41413‑020‑00112‑2 32963891
    [Google Scholar]
  115. LiH. HuC. YuH. ChenC. Chitosan composite scaffolds for articular cartilage defect repair: a review.RSC Advances2018873736374910.1039/C7RA11593H 35542907
    [Google Scholar]
  116. HuangB.J. HuJ.C. AthanasiouK.A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage.Biomaterials20169812210.1016/j.biomaterials.2016.04.018 27177218
    [Google Scholar]
  117. ShamekhiM.A. MirzadehH. MahdaviH. RabieeA. Mohebbi-KalhoriD. Baghaban EslaminejadM. Graphene oxide containing chitosan scaffolds for cartilage tissue engineering.Int. J. Biol. Macromol.201912739640510.1016/j.ijbiomac.2019.01.020 30625354
    [Google Scholar]
  118. SadeghianmaryanA. NaghiehS. Alizadeh SardroudH. YazdanpanahZ. Afzal SoltaniY. SernagliaJ. ChenX. Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering.Int. J. Biol. Macromol.20201643179319210.1016/j.ijbiomac.2020.08.180 32853616
    [Google Scholar]
  119. YangJ. JingX. WangZ. LiuX. ZhuX. LeiT. LiX. GuoW. RaoH. ChenM. LuanK. SuiX. WeiY. LiuS. GuoQ. In vitro and in vivo study on an injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol hydrogel in repairing articular cartilage defects.Front. Bioeng. Biotechnol.2021960770910.3389/fbioe.2021.607709 33681156
    [Google Scholar]
  120. BoyerC. RéthoréG. WeissP. d’ArrosC. LesoeurJ. VinatierC. HalgandB. GeffroyO. FusellierM. VaillantG. RoyP. GauthierO. GuicheuxJ. A self-setting hydrogel of silylated chitosan and cellulose for the repair of osteochondral defects: From in vitro characterization to preclinical evaluation in dogs.Front. Bioeng. Biotechnol.202082310.3389/fbioe.2020.00023 32117912
    [Google Scholar]
  121. GuoC. CaoZ. PengY. WuR. XuH. YuanZ. XiongH. WangY. WuY. LiW. KongQ. WangY. WuJ. Subchondral bone-inspired hydrogel scaffold for cartilage regeneration.Colloids Surf. B Biointerfaces202221811272110.1016/j.colsurfb.2022.112721 35905590
    [Google Scholar]
  122. RajagopalK. RameshS. WalterN.M. AroraA. KattiD.S. MadhuriV. In vivo cartilage regeneration in a multi-layered articular cartilage architecture mimicking scaffold.Bone Joint Res.20209960161210.1302/2046‑3758.99.BJR‑2019‑0210.R2 33014353
    [Google Scholar]
  123. Dehghani NazhvaniF. Mohammadi AmirabadL. AzariA. NamaziH. HosseinzadehS. SamanipourR. KhojastehA. GolchinA. HashemiS. Effects of in vitro low oxygen tension preconditioning of buccal fat pad stem cells on in vivo articular cartilage tissue repair.Life Sci.202128011972810.1016/j.lfs.2021.119728 34144057
    [Google Scholar]
  124. LuoM. ChenM. BaiJ. ChenT. HeS. PengW. WangJ. ZhiW. WengJ. A bionic composite hydrogel with dual regulatory functions for the osteochondral repair.Colloids Surf. B Biointerfaces202221911282110.1016/j.colsurfb.2022.112821 36108368
    [Google Scholar]
  125. LiP. FuL. LiaoZ. PengY. NingC. GaoC. ZhangD. SuiX. LinY. LiuS. HaoC. GuoQ. Chitosan hydrogel/3D-printed poly(ε‐caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment.Biomaterials202127812113110.1016/j.biomaterials.2021.121131 34543785
    [Google Scholar]
  126. Baharlou HourehA. MasaeliE. Nasr-EsfahaniM.H. Chitosan/polycaprolactone multilayer hydrogel: A sustained Kartogenin delivery model for cartilage regeneration.Int. J. Biol. Macromol.202117758960010.1016/j.ijbiomac.2021.02.122 33610607
    [Google Scholar]
  127. YuanZ. LyuZ. ZhangW. ZhangJ. WangY. Porous bioactive prosthesis with chitosan/mesoporous silica nanoparticles microspheres sequentially and sustainedly releasing platelet-derived growth factor-BB and kartogenin: A new treatment strategy for osteoarticular lesions.Front. Bioeng. Biotechnol.20221083912010.3389/fbioe.2022.839120 35186910
    [Google Scholar]
  128. CuiP. PanP. QinL. WangX. ChenX. DengY. ZhangX. Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration.Bioact. Mater.20231948749810.1016/j.bioactmat.2022.03.032 35600973
    [Google Scholar]
  129. ZhangZ. LinS. YanY. YouX. YeH. Enhanced efficacy of transforming growth factor-β1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering.J. Biomater. Sci. Polym. Ed.202132182402242210.1080/09205063.2021.1971823 34428384
    [Google Scholar]
  130. SinghB.N. NallakumarasamyA. SinhaS. RastogiA. MallickS.P. DivakarS. SrivastavaP. Generation of hybrid tissue engineered construct through embedding autologous chondrocyte loaded platelet rich plasma/alginate based hydrogel in porous scaffold for cartilage regeneration.Int. J. Biol. Macromol.202220338940510.1016/j.ijbiomac.2022.01.054 35063489
    [Google Scholar]
  131. StagerM.A. ThomasS.M. Rotello-KuriN. PayneK.A. KrebsM.D. Polyelectrolyte complex hydrogels with controlled mechanics affect mesenchymal stem cell differentiation relevant to growth plate injuries.Macromol. Biosci.2022229220012610.1002/mabi.202200126 35836324
    [Google Scholar]
  132. EricksonC.B. NewsomJ.P. FletcherN.A. FeuerZ.M. YuY. Rodriguez-FontanF. Hadley MillerN. KrebsM.D. PayneK.A. In vivo degradation rate of alginate–chitosan hydrogels influences tissue repair following physeal injury.J. Biomed. Mater. Res. B Appl. Biomater.202010862484249410.1002/jbm.b.34580 32034881
    [Google Scholar]
  133. ErpaçalB. A general overview of chitosan and its use in dentistry.Int. Biol. Biomed. J.201951111
    [Google Scholar]
  134. SharmaS. HashmiM. ChakrabortyR. Asthma Medications. In:Statpearls.Treasure Island, FLStatPearls Publishing2021
    [Google Scholar]
  135. MoreiraM.S. Physical and biological properties of a chitosan hydrogel scaffold associated to photobiomodulation therapy for dental pulp regeneration: An In vivo and In vivo study.Biomed Res. Int.20212021668466710.1155/2021/6684667
    [Google Scholar]
  136. ZhuN. ChatzistavrouX. PapagerakisP. GeL. QinM. WangY. Silver-doped bioactive glass/chitosan hydrogel with potential application in dental pulp repair.ACS Biomater. Sci. Eng.2019594624463310.1021/acsbiomaterials.9b00811 33448835
    [Google Scholar]
  137. DucretM. MontembaultA. JosseJ. PasdeloupM. CelleA. BenchrihR. Mallein-GerinF. Alliot-LichtB. DavidL. FargesJ.C. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration.Dent. Mater.201935452353310.1016/j.dental.2019.01.018 30712823
    [Google Scholar]
  138. GoldbergM. KulkarniA.B. YoungM. BoskeyA. Dentin structure composition and mineralization.Front. Biosci.2011E3271173510.2741/e281 21196346
    [Google Scholar]
  139. SoaresD.G. Biological analysis of simvastatin-releasing chitosan scaffold as a cell-free system for pulp-dentin regeneration.J. Endodont.201844697197610.1016/j.joen.2018.02.014
    [Google Scholar]
  140. BordiniE.A.F. CassianoF.B. SilvaI.S.P. UsbertiF.R. AnovazziG. PachecoL.E. PansaniT.N. LeiteM.L. HeblingJ. de Souza CostaC.A. SoaresD.G. Synergistic potential of 1α,25-dihydroxyvitamin D3 and calcium–aluminate–chitosan scaffolds with dental pulp cells.Clin. Oral Investig.202024266367410.1007/s00784‑019‑02906‑z 31119382
    [Google Scholar]
  141. ZiottiI.R. PaschoiniV.L. CoronaS.A.M. Souza-GabrielA.E. Chitosan-induced biomodification on demineralized dentin to improve the adhesive interface.Restor. Dent. Endod2022473e2810.5395/rde.2022.47.e28 36090512
    [Google Scholar]
  142. LacruzR.S. HabelitzS. WrightJ.T. PaineM.L. Dental enamel formation and implications for oral health and disease.Physiol. Rev.201797393999310.1152/physrev.00030.2016 28468833
    [Google Scholar]
  143. ZhangJ. BoyesV. FestyF. LynchR.J.M. WatsonT.F. BanerjeeA. In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan.Dent. Mater.20183481154116710.1016/j.dental.2018.04.010 29752161
    [Google Scholar]
  144. MuşatV. AnghelE. ZahariaA. AtkinsonI. MocioiuO. BuşilăM. AlexandruP. A chitosan–agarose polysaccharide-based hydrogel for biomimetic remineralization of dental enamel.Biomolecules2021118113710.3390/biom11081137 34439803
    [Google Scholar]
  145. MohabatpourF. YazdanpanahZ. PapagerakisS. ChenX. PapagerakisP. Self-crosslinkable oxidized alginate-carboxymethyl chitosan hydrogels as an injectable cell carrier for in vitro dental enamel regeneration.J. Funct. Biomater.20221327110.3390/jfb13020071 35735926
    [Google Scholar]
  146. YangZ. LiuW. LiuH. LiR. ChangL. KanS. HaoM. WangD. The applications of polysaccharides in dentistry.Front. Bioeng. Biotechnol.20221097004110.3389/fbioe.2022.970041 35935501
    [Google Scholar]
  147. SoaresD.G. BordiniE.A.F. Bronze-UhleE.S. CassianoF.B. SilvaI.S.P. GallinariM.O. MatheusH.R. AlmeidaJ.M. CintraL.T.A. HeblingJ. de Souza CostaC.A. Chitosan-calcium-simvastatin scaffold as an inductive cell-free platform.J. Dent. Res.2021100101118112610.1177/00220345211024207 34315311
    [Google Scholar]
  148. PeerD. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.202021275176010.1201/9780429399039‑2
    [Google Scholar]
  149. NorouziM. NazariB. MillerD.W. Injectable hydrogel-based drug delivery systems for local cancer therapy.Drug Discov. Today201621111835184910.1016/j.drudis.2016.07.006 27423369
    [Google Scholar]
  150. HuangY. MuL. ZhaoX. HanY. GuoB. Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing.ACS Nano2022168130221303610.1021/acsnano.2c05557 35921085
    [Google Scholar]
  151. SofiasA.M. DunneM. StormG. AllenC. The battle of “nano” paclitaxel.Adv. Drug Deliv. Rev.2017122203010.1016/j.addr.2017.02.003 28257998
    [Google Scholar]
  152. WeaverB.A. How Taxol/paclitaxel kills cancer cells.Mol. Biol. Cell201425182677268110.1091/mbc.e14‑04‑0916 25213191
    [Google Scholar]
  153. YangL. LiY. GouY. WangX. ZhaoX. TaoL. Improving tumor chemotherapy effect using an injectable self-healing hydrogel as drug carrier.Polym. Chem.20178345071507610.1039/C7PY00112F
    [Google Scholar]
  154. IchikawaY. GhanefarM. BayevaM. WuR. KhechaduriA. PrasadS.V.N. MutharasanR.K. NaikT.J. ArdehaliH. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation.J. Clin. Invest.2014124261763010.1172/JCI72931 24382354
    [Google Scholar]
  155. QuJ. ZhaoX. MaP.X. GuoB. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy.Acta Biomater.20175816818010.1016/j.actbio.2017.06.001 28583902
    [Google Scholar]
  156. LiX. KwonN. GuoT. LiuZ. YoonJ. Innovative strategies for hypoxic‐tumor photodynamic therapy.Angew. Chem. Int. Ed.20185736115221153110.1002/anie.201805138 29808948
    [Google Scholar]
  157. LinC. HaoH. MeiL. WuM. Metal-free two-dimensional nanomaterial-mediated photothermal tumor therapy.Smart Mater. Med.2020115016710.1016/j.smaim.2020.09.001
    [Google Scholar]
  158. QiY. QianZ. YuanW. LiZ. Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy.J. Mater. Chem. B Mater. Biol. Med.20219479734974310.1039/D1TB01753E 34787633
    [Google Scholar]
  159. QianZ. ZhaoN. WangC. YuanW. Injectable self-healing polysaccharide hydrogel loading CuS and pH-responsive DOX@ZIF-8 nanoparticles for synergistic photothermal-photodynamic-chemo therapy of cancer.J. Mater. Sci. Technol.202212724525510.1016/j.jmst.2022.04.015
    [Google Scholar]
/content/journals/cos/10.2174/0115701794307242240612075648
Loading
/content/journals/cos/10.2174/0115701794307242240612075648
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biocompatibility; bone; Chitosan; hydrogel; natural polymer; tissue engineering
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test