Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Palladium-catalyzed carbonylative cross-coupling reactions with various carbon monoxide (CO) sources cultivate competent routes for the synthesis of bulk and value-added chemicals. However, the practical use of this odorless, inflammable, lethal gas has always raised a concern for chemists. The attention and advancement of various CO-surrogates is surely welcomed as a green alternative to CO-gas. However, the main concern lies in the suitability and scalability of these CO-surrogate-driven reactions. Literature showed the progress of various ways to make CO from these CO surrogates. One of the most convenient sources is using metal carbonyls which are already known to lose CO easily. Among all the kinds, Mo(CO) gained much popularity but its toxic nature and demand for high temperatures restricted its use. However, Co(CO) is popular as a catalyst but as an CO-source reports are scarce. This low-melting CO-releaser was found effective in flourishing aminocarbonylation, alkoxycarbonylation, and reductive carbonylation under mild conditions. This mini-review portrays the recent developments of palladium-catalyzed carbonylation reactions using Co(CO) as a CO source.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794302069240624045929
2024-07-18
2025-09-01
Loading full text...

Full text loading...

References

  1. BellerM. Catalytic Carbonylation Reactions.Berlin, HeidelbergSpringer20061810.1007/b105253
    [Google Scholar]
  2. DasD. BhanageB.M. Nickel-Catalyzed Carbonylations.John Wiley & Sons202210.1002/9783527829354.ch3
    [Google Scholar]
  3. WuX.F. NeumannH. BellerM. Synthesis of heterocycles via palladium-catalyzed carbonylations.Chem. Rev.2013113113510.1021/cr300100s 23039127
    [Google Scholar]
  4. GautamP. BhanageB.M. Recent advances in the transition metal catalyzed carbonylation of alkynes, arenes and aryl halides using CO surrogates.Catal. Sci. Technol.20155104663470210.1039/C5CY00691K
    [Google Scholar]
  5. SimsH.S. DaiM. Palladium-catalyzed carbonylations: Application in complex natural product total synthesis and recent developments.J. Org. Chem.20238884925494110.1021/acs.joc.2c02746 36705327
    [Google Scholar]
  6. PengJ.B. GengH.Q. WuX.F. The Chemistry of CO: Carbonylation.Chem20195352655210.1016/j.chempr.2018.11.006
    [Google Scholar]
  7. GadgeS.T. BhanageB.M. Recent developments in palladium catalysed carbonylation reactions.RSC Adv.2014420103671038910.1039/c3ra46273k
    [Google Scholar]
  8. DasD. BhanageB.M. Double carbonylation reactions: Overview and recent advances.Adv. Synth. Catal.2020362153022305810.1002/adsc.202000245
    [Google Scholar]
  9. GehrtzP.H. HirschbeckV. FleischerI. A recyclable CO surrogate in regioselective alkoxycarbonylation of alkenes: Indirect use of carbon dioxide.Chem. Commun. 20155163125741257710.1039/C5CC05012J 26152898
    [Google Scholar]
  10. UedaT. KonishiH. ManabeK. Palladium-catalyzed fluorocarbonylation using N-formylsaccharin as CO source: General access to carboxylic acid derivatives.Org. Lett.201315205370537310.1021/ol4026815 24088068
    [Google Scholar]
  11. FrankeR. SelentD. BörnerA. Applied Hydroformylation.Chem. Rev.2012112115675573210.1021/cr3001803 22937803
    [Google Scholar]
  12. SunleyG.J. WatsonD.J. High productivity methanol carbonylation catalysis using iridium.Catal. Today200058429330710.1016/S0920‑5861(00)00263‑7
    [Google Scholar]
  13. NogiK. YorimitsuH. Catalytic carbonylation and carboxylation of organosulfur compounds via C−S Cleavage.Chem. Asian J.202015444144910.1002/asia.201901644 31849193
    [Google Scholar]
  14. ZhuY. DongW. TangW. Palladium-catalyzed cross-couplings in the synthesis of agrochemicals.Adv. Agrochem.20221212513810.1016/j.aac.2022.11.004
    [Google Scholar]
  15. TrzeciakA.M. AugustyniakA.W. The role of palladium nanoparticles in catalytic C–C cross-coupling reactions.Coord. Chem. Rev.201938412010.1016/j.ccr.2019.01.008
    [Google Scholar]
  16. NasrollahzadehM. MotahharifarN. GhorbannezhadF. Soheili BidgoliN.S. BaranT. VarmaR.S. Recent advances in polymer supported palladium complexes as (nano)catalysts for Sonogashira coupling reaction.Molecular Catalysis202048011064510.1016/j.mcat.2019.110645
    [Google Scholar]
  17. WuX.F. NeumannH. BellerM. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles.Chem. Soc. Rev.201140104986500910.1039/c1cs15109f 21792459
    [Google Scholar]
  18. BrennführerA. NeumannH. BellerM. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds.Angew. Chem. Int. Ed.200948234114413310.1002/anie.200900013 19431166
    [Google Scholar]
  19. NegishiE. Magical power of transition metals: Past, present, and future (Nobel Lecture).Angew. Chem. Int. Ed.201150306738676410.1002/anie.201101380 21717531
    [Google Scholar]
  20. SuzukiA. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds (Nobel Lecture).Angew. Chem. Int. Ed.201150306722673710.1002/anie.201101379 21618370
    [Google Scholar]
  21. SchoenbergA. HeckR.F. Palladium-catalyzed amidation of aryl, heterocyclic, and vinylic halides.J. Org. Chem.197439233327333110.1021/jo00937a004
    [Google Scholar]
  22. SchoenbergA. HeckR.F. Palladium-catalyzed formylation of aryl, heterocyclic, and vinylic halides.J. Am. Chem. Soc.197496257761776410.1021/ja00832a024
    [Google Scholar]
  23. ChenZ. WangL.C. WuX.F. Carbonylative synthesis of heterocycles involving diverse CO surrogates.Chem. Commun. 202056456016603010.1039/D0CC01504K 32409789
    [Google Scholar]
  24. KonishiH. ManabeK. Recent progress on catalytic Heck carbonylations using carbon monoxide surrogates.Tetrahedron Lett.2019604215114710.1016/j.tetlet.2019.151147
    [Google Scholar]
  25. XiongW. WuB. ZhuB. TanX. WangL. WuW. QiC. JiangH. One‐pot palladium‐catalyzed carbonylative sonogashira coupling using carbon dioxide as carbonyl source.ChemCatChem202113122843285110.1002/cctc.202100051
    [Google Scholar]
  26. Antonella AronicaL. Carbon monoxide surrogates for palladium-catalyzed Suzuki-Miyaura and Sonogashira carbonylative cross-coupling reactions.Inorg. Chim. Acta202355812176310.1016/j.ica.2023.121763
    [Google Scholar]
  27. UedaT. KonishiH. ManabeK. Palladium-catalyzed reductive carbonylation of aryl halides with N-formylsaccharin as a CO source.Angew. Chem. Int. Ed.201352338611861510.1002/anie.201303926 23824917
    [Google Scholar]
  28. CaoJ. ZhengZ-J. XuZ. XuL-W. Transition-metal-catalyzed transfer carbonylation with HCOOH or HCHO as non-gaseous C1 source.Coord. Chem. Rev.2017336435310.1016/j.ccr.2017.01.005
    [Google Scholar]
  29. HoshimotoY. OhataT. SasaokaY. OhashiM. OgoshiS. Nickel(0)-catalyzed [2 + 2 + 1] carbonylative cycloaddition of imines and alkynes or norbornene leading to γ-lactams.J. Am. Chem. Soc.201413645158771588010.1021/ja509171a 25354361
    [Google Scholar]
  30. ShilA.K. KumarS. ReddyC.B. DadhwalS. ThakurV. DasP. Supported palladium nanoparticle-catalyzed carboxylation of aryl halides, alkenylsilanes, and organoboronic acids employing oxalic acid as the C 1 source.Org. Lett.201517215352535510.1021/acs.orglett.5b02701 26479944
    [Google Scholar]
  31. LangX.D. YouF. HeX. YuY-C. HeL.N. Rhodium(I)-catalyzed Pauson–Khand-type reaction using formic acid as a CO surrogate: An alternative approach for indirect CO 2 utilization.Green Chem.201921350951410.1039/C8GC03933J
    [Google Scholar]
  32. YangH. ZhangJ. ChenZ. WuX.F. BenT.F. TFBen (Benzene‐1,3,5‐triyl triformate): A powerful and versatile CO surrogate.Chem. Rec.2022222e20210022010.1002/tcr.202100220 34591367
    [Google Scholar]
  33. GautamP. KatheP. BhanageB.M. Pd/C catalyzed phenoxycarbonylation using N-formylsaccharin as a CO surrogate in propylene carbonate, a sustainable solvent.Green Chem.201719382383010.1039/C6GC03027K
    [Google Scholar]
  34. MahajanV.P. KolekarY.A. BhanageB.M. Ni/Al2O3: Catalyzed carbonylative homocoupling of aryl iodides for the synthesis of symmetrical diaryl ketone using Co2(CO)8 as CO surrogate.Catal. Lett.202415441440145010.1007/s10562‑023‑04430‑y
    [Google Scholar]
  35. KaiserN.F.K. HallbergA. LarhedM. In situ generation of carbon monoxide from solid molybdenum hexacarbonyl. A convenient and fast route to palladium-catalyzed carbonylation reactions.J. Comb. Chem.20024210911110.1021/cc010085f 11886283
    [Google Scholar]
  36. JafarpourF. Rashidi-RanjbarP. KashaniA.O. Easy‐to‐execute carbonylative arylation of aryl halides using molybdenum hexacarbonyl: Efficient synthesis of unsymmetrical diaryl ketones.Eur. J. Org. Chem.20112011112128213210.1002/ejoc.201001733
    [Google Scholar]
  37. OdellL.R. SävmarkerJ. LarhedM. Microwave-promoted aminocarbonylation of aryl triflates using Mo(CO)6 as a solid CO source.Tetrahedron Lett.200849426115611810.1016/j.tetlet.2008.08.014
    [Google Scholar]
  38. BoehmP. DentonE.H. WickJ. MorandiB. Intermolecular pauson–khand-type reaction of vinyl iodides with alkynes and a CO surrogate.J. Org. Chem.20238885069507710.1021/acs.joc.2c02465 36598125
    [Google Scholar]
  39. MozaffariM. NowrouziN. AbbasiM. The use of Cr (CO)6 as an alternative CO source in Pd-catalyzed C-N bond formation: Synthesis of benzamides.Applied. Organometall. Chem.2019338e504910.1002/aoc.5049
    [Google Scholar]
  40. BaburajanP. SenthilkumaranR. ElangoK.P. Cobalt carbonyl as an effective CO source in one-pot synthesis of esters from aryl halides.New J. Chem.201337103050305610.1039/c3nj00548h
    [Google Scholar]
  41. BabjakM. MarkovičM. KandríkováB. GraczaT. Homogeneous cyclocarbonylation of alkenols with iron pentacarbonyl.Synthesis201446680981610.1055/s‑0033‑1340619
    [Google Scholar]
  42. ZhuZ. WangZ. JianY. SunH. ZhangG. LynamJ.M. McElroyC.R. BurdenT.J. InightR.L. FairlambI.J.S. ZhangW. GaoZ. Pd-Catalysed carbonylative Suzuki–Miyaura cross-couplings using Fe(CO) 5 under mild conditions: generation of a highly active, recyclable and scalable ‘Pd–Fe’ nanocatalyst.Green Chem.202123292092610.1039/D0GC03036H
    [Google Scholar]
  43. LopatkaP. MarkovičM. KoóšP. LeyS.V. GraczaT. Continuous Pd-catalyzed carbonylative cyclization using iron pentacarbonyl as a CO source.J. Org. Chem.20198422143941440610.1021/acs.joc.9b02453 31646860
    [Google Scholar]
  44. FallenW. BrummoundK.M. MitasevB. Encyclopedia of Reagents for Organic Synthesis.New YorkWiley2006
    [Google Scholar]
  45. IyerS. KulkarniG.M. Mo(CO) 6 mediated selective reduction of azides and nitro compounds to amines under neutral conditions.Synth. Commun.200434472172510.1081/SCC‑120027720
    [Google Scholar]
  46. SpencerJ. AnjumN. PatelH. RathnamR. VermaJ. Molybdenum hexacarbonyl and DBU reduction of nitro compounds under microwave irradiation.Synlett20072007162557255810.1055/s‑2007‑986628
    [Google Scholar]
  47. Yoo; B. W., Song; M. S., Park.M. C. Bull. Korean Chem. Soc.200728171172
    [Google Scholar]
  48. BrauerG. Handbook of Preparative Inorganic Chemistry; Academic Press: New York 19632p. 1743
    [Google Scholar]
  49. Dahl; L. F., Ishishi; E., Rundle.R. E. J. Chem. Phys.1957261750
    [Google Scholar]
  50. Elschenbroich; C., Salzer; A., Organometallics: A Concise Introduction.2nd edWeinheimWiley-VCH1992
    [Google Scholar]
  51. Cole ParmerMSDS Available from: http://www.coleparmer.com/catalog/Msds/56919.html
  52. BaburajanP. ElangoK.P. Co2(CO)8 as a convenient in situ CO source for the direct synthesis of benzamides from aryl halides (Br/I) via aminocarbonylation.Tetrahedron Lett.20145551006101010.1016/j.tetlet.2013.12.062
    [Google Scholar]
  53. BaburajanP. ElangoK.P. One-pot direct synthesis of Weinreb amides from aryl and hetero aryl halides using Co2(CO)8 as an effective CO source under conventional thermal heating.Synth. Commun.201545453153810.1080/00397911.2014.974610
    [Google Scholar]
  54. MurakamiM. HoshinoY. ItoH. ItoY. Palladium-catalyzed coupling reactions of N-Methoxy-N-methylcarbamoyl chloride for the synthesis of n-methoxy-n-methylamides.Chem. Lett.199827216316410.1246/cl.1998.163
    [Google Scholar]
  55. MartinelliJ.R. FreckmannD.M.M. BuchwaldS.L. Convenient method for the preparation of Weinreb amides via Pd-catalyzed aminocarbonylation of aryl bromides at atmospheric pressure.Org. Lett.20068214843484610.1021/ol061902t 17020317
    [Google Scholar]
  56. WiȩckowskaA. FranssonR. OdellL.R. LarhedM. Microwave-assisted synthesis of Weinreb and MAP aryl amides via Pd-catalyzed Heck aminocarbonylation using Mo(CO)6 or W(CO)6.J. Org. Chem.201176397898110.1021/jo102151u 21229975
    [Google Scholar]
  57. BickelhauptF.M. de KoningL.J. NibberingN.M.M. Base-induced imine-forming 1,2-elimination reactions in the gas phase.J. Org. Chem.19935892436244110.1021/jo00061a016
    [Google Scholar]
  58. GrahamS.L. ScholzT.H. A new mode of reactivity of N-methoxy-N-methylamides with strongly basic reagents.Tetrahedron Lett.199031446269627210.1016/S0040‑4039(00)97039‑4
    [Google Scholar]
  59. ChoS.K. SongJ.H. HahnJ.T. JungD. Biaryl diketone synthesis via palladium‐catalyzed carbonylative coupling with carbon monoxide or various metal carbonyls.Bull. Korean Chem. Soc.201637101567157010.1002/bkcs.10904
    [Google Scholar]
  60. IshiyamaT. KizakiH. HayashiT. SuzukiA. MiyauraN. Palladium-catalyzed carbonylative cross-coupling reaction of arylboronic acids with aryl electrophiles: Synthesis of biaryl ketones.J. Org. Chem.199863144726473110.1021/jo980417b
    [Google Scholar]
  61. DongY. SunS. YangF. ZhuY. ZhuW. QiaoH. WuY. WuY. Pd-catalyzed aminocarbonylation of alkynes with amines using Co 2 (CO) 8 as a carbonyl source.Org. Chem. Front.20163672072410.1039/C6QO00075D
    [Google Scholar]
  62. GriggR. MuttonS.P. Palladium-catalyzed carbonylative synthesis of N-cyanobenzamides from aryl iodides/bromides and cyanamide.Tetrahedron2010665515554810.1016/j.tet.2010.03.090
    [Google Scholar]
  63. LiuQ. ZhangH. LeiA. Oxidative Carbonylation Reactions: Organometallic Compounds (R-M) or Hydrocarbons (R-H) as Nucleophiles.Angew. Chem. Int. Ed.20115046107881079910.1002/anie.201100763
    [Google Scholar]
  64. JosephJ.T. SajithA.M. NingegowdaR.C. ShashikanthS. Room temperature carbonylation of (Hetero) aryl pentafluorobenzenesulfonates and triflates using palladium‐cobalt bimetallic catalyst: dual role of cobalt carbonyl.Adv. Synth. Catal.2017359341942510.1002/adsc.201600736
    [Google Scholar]
  65. ReevesD.C. RodriquezS. LeeH. HaddadN. Palladium catalyzed alkoxy- and aminocarbonylation of vinyl tosylates.Org. Lett.2011132495249710.1021/ol200744s
    [Google Scholar]
  66. IshiiY. MiyashitaK. KamitaK. HidaiM. Selective hydroformylation of internal acetylenes by PdCl 2 (PCy 3) 2: Remarkable synergistic effect of cobalt.J. Am. Chem. Soc.1997119276448644910.1021/ja9703887
    [Google Scholar]
  67. FriisS.D. SkrydstrupT. BuchwaldS.L. Mild Pd-catalyzed aminocarbonylation of (hetero)aryl bromides with a palladacycle precatalyst.Org. Lett.201416164296429910.1021/ol502014b 25090373
    [Google Scholar]
  68. ChenG. LengY. YangF. WangS. WuY. Palladacycle‐catalyzed carbonylation of aryl iodides or bromides with aryl formates.Chin. J. Chem.201331121488149410.1002/cjoc.201300675
    [Google Scholar]
  69. DasguptaA. RamkumarV. SankararamanS. Synthesis of fluorescent 1,3‐diarylpropynones by carbonylative alkynylation reaction using (Phosphine) (1,2,3‐triazol‐5‐ylidene)palladium complexes as catalysts.Eur. J. Org. Chem.20162016284817482310.1002/ejoc.201600744
    [Google Scholar]
  70. GaikwadV.V. ManeP.A. DeyS. BhanageB.M. Dppf‐ligated palladium complex as an efficient catalyst for the synthesis of biaryl ketones using Co 2 (CO) 8 as a C1 source with high TON and TOF.ChemistrySelect20194288269827610.1002/slct.201901930
    [Google Scholar]
  71. GaikwadV.V. ManeP.A. DeyS. PatelD. BhanageB.M. Supramolecular Pd(II) complex of DPPF and dithiolate: An efficient catalyst for amino and phenoxycarbonylation using Co2(CO)8 as sustainable C1 source.Molecular Catalysis202048211067210.1016/j.mcat.2019.110672
    [Google Scholar]
  72. CherukuS. SajithA.M. NarayanaY. ShettyP. NagarakereS.C. SagarK.S. ManikyanallyK.N. RangappaK.S. MantelinguK. Co 2 (CO) 8 as a Solid CO (g) source for the amino carbonylation of (hetero)aryl halides with highly deactivated (hetero)arylamines.J. Org. Chem.20218685530553710.1021/acs.joc.0c02999
    [Google Scholar]
  73. DoggaB. KumarC.S.A. JosephJ.T. Palladium‐catalyzed reductive carbonylation of (hetero) aryl halides and triflates using cobalt carbonyl as CO Source.Eur. J. Org. Chem.20212021230931310.1002/ejoc.202001328
    [Google Scholar]
  74. LokolkarM.S. PalM.K. DeyS. BhanageB.M. POP-pincer xantphos Pd complex of 4-pyridylthiolate: Cyclocarbonylative reaction for the synthesis of flavones using cobalt carbonyl as a C1 source.Catal. Lett.202315382359236710.1007/s10562‑022‑04161‑6
    [Google Scholar]
/content/journals/cos/10.2174/0115701794302069240624045929
Loading
/content/journals/cos/10.2174/0115701794302069240624045929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test