Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

An efficient method for synthesizing cyclic arylsulfonium salts has been developed by selective aryl transfer to the sulfur atom from aryl(mesityl)iodonium triflates, a recyclable series of diaryliodonium salts.

Methods

The utilization of sulfonium salts as valuable intermediates is well-established, as they exhibit high reactivity under conditions of heating or UV irradiation. However, their synthesis typically involves the reaction of diarysulfoxide with acid anhydride, which requires the oxidation of sulfur(II) to sulfoxide(IV) and thus limits the scope of synthesis. Hence, in this study, we employed recyclable mesityliodonium(III) salts and copper catalysis.

Results

The method was used to synthesize cyclic arylsulfonium salts without the need for pre-oxidation of the sulfur atom, resulting in a facile and high-yield synthesis.

Conclusion

The desired cyclic arylsulfonium salts were synthesized through selective transfer of the aryl group from mesityliodonium salts, demonstrating the effectiveness of the new approach.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794298369240607042545
2024-07-22
2025-09-02
Loading full text...

Full text loading...

References

  1. a KozhushkovS.I. AlcarazoM. Synthetic applications of sulfonium salts.Eur. J. Inorg. Chem.20202020262486250010.1002/ejic.20200024932742188
    [Google Scholar]
  2. b KaiserD. KloseI. OostR. NeuhausJ. MaulideN. Bond-forming and -breaking reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts.Chem. Rev.2019119148701878010.1021/acs.chemrev.9b00111 31243998
    [Google Scholar]
  3. a PéterÁ. PerryG.J.P. ProcterD.J. Radical C−C Bond Formation using Sulfonium Salts and Light.Adv. Synth. Catal.2020362112135214210.1002/adsc.202000220
    [Google Scholar]
  4. b ZhangB. LiT. KangY. Synthesis and characterization of triarylsulfonium salts as novel cationic photoinitiators for UV-photopolymerization.Res. Chem. Intermed.201743116617662510.1007/s11164‑017‑3009‑1
    [Google Scholar]
  5. AuklandM.H. TalbotF.J.T. Fernández-SalasJ.A. BallM. PulisA.P. ProcterD.J. An interrupted pummerer/nickel‐catalysed cross‐coupling sequence.Angew. Chem. Int. Ed.201857319785978910.1002/anie.201805396 29882623
    [Google Scholar]
  6. López-AlledC.M. MartinF.J.O. ChenK.Y. Kociok-KöhnG. JamesT.D. WenkJ. LewisS.E. Azulenesulfonium and azulenebis(sulfonium) salts: Formation by interrupted Pummerer reaction and subsequent derivatisation by nucleophiles.Tetrahedron2020764913170010.1016/j.tet.2020.131700
    [Google Scholar]
  7. van DalsenL. BrownR.E. Rossi-AshtonJ.A. ProcterD.J. Sulfonium salts as acceptors in electron donor‐acceptor complexes.Angew. Chem. Int. Ed.20236229e20230310410.1002/anie.202303104 36959098
    [Google Scholar]
  8. a BergerF. PlutschackM.B. RieggerJ. YuW. SpeicherS. HoM. FrankN. RitterT. Site-selective and versatile aromatic C−H functionalization by thianthrenation.Nature2019567774722322810.1038/s41586‑019‑0982‑030867606
    [Google Scholar]
  9. b AuklandM.H. ŠiaučiulisM. WestA. PerryG.J.P. ProcterD.J. Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted Pummerer activation.Nat. Catal.20203216316910.1038/s41929‑019‑0415‑3
    [Google Scholar]
  10. c MorofujiT. YoshidaT. TsutsumiR. YamanakaM. KanoN. Arylation of aryllithiums with S -arylphenothiazinium ions for biaryl synthesis.Chem. Commun. 20205690139951399810.1039/D0CC05830K 33094752
    [Google Scholar]
  11. ImazekiS. SuminoM. FukasawaK. IshiharaM. AkiyamaT. Facile method for the preparation of triarylsulfonium bromides using grignard reagents and chlorotrimethylsilane as an activator.Synthesis20042004101648165410.1055/s‑2004‑829113
    [Google Scholar]
  12. KnapczykJ.W. McEwenW.E. Reactions of triarylsulfonium salts with bases.J. Am. Chem. Soc.196991114515010.1021/ja01029a029
    [Google Scholar]
  13. CrivelloJ.V. LamJ.H.W. A new preparation of triarylsulfonium and -selenonium salts via the copper(II)-catalyzed arylation of sulfides and selenides with diaryliodonium salts.J. Org. Chem.197843153055305810.1021/jo00409a027
    [Google Scholar]
  14. RacicotL. KasaharaT. CiufoliniM.A. Arylation of diorganochalcogen compounds with diaryliodonium triflates: Metal catalysts are unnecessary.Org. Lett.201416246382638510.1021/ol503177q 25493925
    [Google Scholar]
  15. YanezC.O. AndradeC.D. BelfieldK.D. Characterization of novel sulfonium photoacid generators and their microwave-assisted synthesis.Chem. Commun. 2009782782910.1039/b815831b 19322455
    [Google Scholar]
  16. StuartD.R. Aryl transfer selectivity in metal‐free reactions of unsymmetrical diaryliodonium salts.Chemistry20172363158521586310.1002/chem.201702732 28793179
    [Google Scholar]
  17. WuX.X. HeY. ZhaoX.J. LiG. Copper‐catalyzed electrophilic arylation of isatoic anhydride with diaryliodonium salts for synthesis of N‐phenylated isatoic anhydrides.Asian J. Org. Chem.2022117e20220015510.1002/ajoc.202200155
    [Google Scholar]
  18. YuH. LiZ. BolmC. Transition-metal-free arylations of in-situ generated sulfenates with diaryliodonium salts.Org. Lett.201820227104710610.1021/acs.orglett.8b03046 30371090
    [Google Scholar]
  19. ModhaS.G. PopescuM.V. GreaneyM.F. Synthesis of triarylamines via sequential C–N bond formation.J. Org. Chem.20178222119331193810.1021/acs.joc.7b01778 28845673
    [Google Scholar]
  20. DohiT. HayashiT. UedaS. ShojiT. KomiyamaK. TakeuchiH. KitaY. Recyclable synthesis of mesityl iodonium(III) salts.Tetrahedron201975263617362710.1016/j.tet.2019.05.033
    [Google Scholar]
  21. SundalamS.K. NilovaA. SeidlT.L. StuartD.R. A selective C−H deprotonation strategy to access functionalized arynes by using hypervalent iodine.Angew. Chem. Int. Ed.201655298431843410.1002/anie.201603222 27239971
    [Google Scholar]
  22. BigotA. WilliamsonA.E. GauntM.J. Enantioselective α-arylation of N-acyloxazolidinones with copper(II)-bisoxazoline catalysts and diaryliodonium salts.J. Am. Chem. Soc.201113335137781378110.1021/ja206047h 21848264
    [Google Scholar]
  23. OhC.H. KimJ.S. JungH.H. Highly efficient arylation of malonates with diaryliodonium salts.J. Org. Chem.19996441338134010.1021/jo981065b
    [Google Scholar]
  24. SeidlT.L. SundalamS.K. McCulloughB. StuartD.R. Unsymmetrical Aryl(2,4,6-trimethoxyphenyl)iodonium salts: One-pot synthesis, scope, stability, and synthetic studies.J. Org. Chem.20168151998200910.1021/acs.joc.5b02833 26828570
    [Google Scholar]
  25. KosekiD. AotoE. ShojiT. WatanabeK. In, Y.; Kita, Y.; Dohi, T. Efficient N-arylation of azole compounds utilizing selective aryl-transfer TMP-iodonium(III) reagents.Tetrahedron Lett.201960181281128610.1016/j.tetlet.2019.04.012
    [Google Scholar]
  26. KikushimaK. MiyamotoN. WatanabeK. KosekiD. KitaY. DohiT. Ligand- and counterion-assisted phenol O -arylation with TMP-Iodonium(III) acetates.Org. Lett.202224101924192810.1021/acs.orglett.2c00294 35254085
    [Google Scholar]
  27. KikushimaK. YamadaK. UmekawaN. YoshioN. KitaY. DohiT. Decarboxylative arylation with diaryliodonium(III) salts: Alternative approach for catalyst-free difluoroenolate coupling to aryldifluoromethyl ketones.Green Chem.20232551790179610.1039/D2GC04445E
    [Google Scholar]
  28. TakenagaN. YotoY. HayashiT. MiyamotoN. NojiriH. KumarR. DohiT. Catalytic and non-catalytic selective aryl transfer from (mesityl)iodonium(III) salts to diarylsulfide compounds.ARKIVOC2021vii71810.24820/ark.5550190.p011.732
    [Google Scholar]
  29. a DohiT. ItoM. YamaokaN. MorimotoK. FujiokaH. KitaY. Hypervalent iodine(III): Selective and efficient single-electron-transfer (SET) oxidizing agent.Tetrahedron20096552107971081510.1016/j.tet.2009.10.040
    [Google Scholar]
  30. b KitaY. DohiT. MorimotoK. Hypervalent iodine induced metal-free C-H cross couplings to biaryls.J. Synth. Org. Chem. Jpn.201169111241125010.5059/yukigoseikyokaishi.69.1241
    [Google Scholar]
  31. c DohiT. KitaY. Metal-free oxidative biaryl coupling by hypervalent iodine reagents.Curr. Org. Chem.201620558061510.2174/1385272819666150716173142
    [Google Scholar]
  32. a KitaY. MorimotoK. ItoM. OgawaC. GotoA. DohiT. Metal-free oxidative cross-coupling of unfunctionalized aromatic compounds.J. Am. Chem. Soc.200913151668166910.1021/ja808940n19191694
    [Google Scholar]
  33. b DohiT. ItoM. YamaokaN. MorimotoK. FujiokaH. KitaY. Unusual ipso substitution of diaryliodonium bromides initiated by a single-electron-transfer oxidizing process.Angew. Chem. Int. Ed.201049193334333710.1002/anie.200907281 20405520
    [Google Scholar]
  34. YamaokaN. SumidaK. ItaniI. KuboH. OhnishiY. SekiguchiS. DohiT. KitaY. Single-electron-transfer (SET)-induced oxidative biaryl coupling by polyalkoxybenzene-derived diaryliodonium(III) salts.Chemistry20131944150041501110.1002/chem.201301148 24105695
    [Google Scholar]
  35. DohiT. ItoM. ItaniI. YamaokaN. MorimotoK. FujiokaH. KitaY. Metal-free C-H cross-coupling toward oxygenated naphthalene-benzene linked biaryls.Org. Lett.201113236208621110.1021/ol202632h 22035315
    [Google Scholar]
  36. DohiT. ItoM. MorimotoK. IwataM. KitaY. Oxidative cross-coupling of arenes induced by single-electron transfer leading to biaryls by use of organoiodine(III) oxidants.Angew. Chem. Int. Ed.20084771301130410.1002/anie.200704495 18080255
    [Google Scholar]
  37. WatanabeA. MiyamotoK. OkadaT. AsawaT. UchiyamaM. Safer synthesis of (Diacetoxyiodo)arenes using sodium hypochlorite pentahydrate.J. Org. Chem.20188323142621426810.1021/acs.joc.8b02541 30392358
    [Google Scholar]
  38. HuangH. ShiQ. MiC. Green preparation of biaryl compounds via copper-catalyzed cross-coupling reaction of arylsulfide with arylsilane. C.N. Patent 116,462,6582023
    [Google Scholar]
  39. ZhangW. LiuT. AngH.T. LuoP. LeiZ. LuoX. KohM.J. WuJ. Modular and practical 1,2‐Aryl(Alkenyl) heteroatom functionalization of alkenes through iron/photoredox dual catalysis**.Angew. Chem. Int. Ed.20236244e20231097810.1002/anie.202310978 37699857
    [Google Scholar]
  40. SelmaniA. SchoenebeckF. Transition-metal-free, formal C–H germylation of arenes and styrenes via dibenzothiophenium salts.Org. Lett.202123124779478410.1021/acs.orglett.1c01505 34085523
    [Google Scholar]
  41. JuliáF. ShaoQ. DuanM. PlutschackM.B. BergerF. MateosJ. LuC. XueX.S. HoukK.N. RitterT. High site selectivity in electrophilic aromatic substitutions: Mechanism of C–H thianthrenation.J. Am. Chem. Soc.202114339160411605410.1021/jacs.1c06281 34546749
    [Google Scholar]
  42. KitamuraT. ZhangB.X. FujiwaraY. Novel [4 + 2]-cycloaddition of 1-phenyl-1-benzothiophenium salts with dienes. Experimental evidence for a lack of aromaticity in the thiophene ring.J. Org. Chem.200368373173510.1021/jo020406p 12558392
    [Google Scholar]
  43. PhippsR.J. GrimsterN.P. GauntM.J. Cu(II)-catalyzed direct and site-selective arylation of indoles under mild conditions.J. Am. Chem. Soc.2008130268172817410.1021/ja801767s 18543910
    [Google Scholar]
  44. KitamuraT. ZhangB-X. NukaT. FujiwaraY. YamajiT. HouZ. Diels-alder reaction and double phenylation in reaction of thiophenes with diphenyliodonium triflate.Heterocycles200464119920610.3987/COM‑04‑S(P)12
    [Google Scholar]
  45. YoshidaT. HondaY. MorofujiT. KanoN. Transition-metal-free O-arylation of alcohols and phenols with S -arylphenothiaziniums.J. Org. Chem.202287117565757310.1021/acs.joc.2c00771 35578794
    [Google Scholar]
  46. PhippsR.J. GauntM.J. A meta-selective copper-catalyzed C-H bond arylation.Science200932359211593159710.1126/science.1169975 19299616
    [Google Scholar]
  47. MalmgrenJ. SantoroS. JalalianN. HimoF. OlofssonB. Arylation with unsymmetrical diaryliodonium salts: A chemoselectivity study.Chemistry20131931103341034210.1002/chem.201300860 23788251
    [Google Scholar]
  48. BöhmM.J. GolzC. RüterI. AlcarazoM. Two‐step synthesis of unsymmetrical diaryl sulfides by electrophilic thiolation of non‐functionalized (hetero)arenes.Chemistry20182456150261503510.1002/chem.201802806 29981257
    [Google Scholar]
/content/journals/cos/10.2174/0115701794298369240607042545
Loading
/content/journals/cos/10.2174/0115701794298369240607042545
Loading

Data & Media loading...

Supplements

Supportive/Supplementary material will be available on the journal’s website. 1H, 19F, 13C spectra charts of the sulfonium salt products are available as supplementary material.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test