Skip to content
2000
image of Synthetic Developments of Diaryl Ditellurides

Abstract

Diaryl ditellurides constitute an important class of organotellurium compounds with significant applications in medicinal chemistry and organic synthesis. They have proven to be powerful organocatalysts in synthetic transformations and effective molecular fluorescent probes for the recognition of biologically active molecules. Although organotelluride compounds are less explored, they have been described as promising pharmacological agents possessing anticancer, anti-inflammatory, antibacterial, antifungal, antiprotozoal, and antioxidant activities. Additionally, Te-based molecules have shown interesting applications in semiconductors, magnets, and nonlinear optical materials. The increasing interest in tellurium chemistry has been stimulated by recent developments of valuable tellurium-based organocatalysts, which have proven effective in several functional group transformations under sustainable conditions. Moreover, the construction of Te–Te bonds by embedding elemental tellurium into functional moieties via telluration has become a popular research area. The synthetic methodologies are generally high yielding and exhibit notable advantages in terms of regioselectivity, broad substrate scope, excellent functional group tolerance on the aromatic ring, and high conversion ratios. A library of diaryl ditellurides bearing both electron-donating and electron-withdrawing substituents has been afforded by these protocols. Despite the significant synthetic importance of diaryl ditellurides in organic synthesis, few synthetic approaches have been documented in the literature to date. This review article summarizes recent developments in ditelluride synthesis under ligand- and additive-free conditions. The sustainable techniques employed involve the use of non-toxic, low-cost, commercially available reagents and environmentally benign, green solvents.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372439058251211080745
2026-01-14
2026-01-31
Loading full text...

Full text loading...

References

  1. Petragnani N. Stefani H.A. Tellurium in organic synthesis. 2nd ed Amsterdam Elsevier 2007 10.1016/B978‑008045310‑1/50007‑1
    [Google Scholar]
  2. Yamago S. Photoactivation of organotellurium compounds in precision polymer synthesis: Controlled radical polymerization and radical coupling reactions. Bull. Chem. Soc. Jpn. 2020 93 2 287 298 10.1246/bcsj.20190339
    [Google Scholar]
  3. Yamamoto Y. Sato F. Chen Q. Kodama S. Nomoto A. Ogawa A. Transition-metal-free synthesis of unsymmetrical diaryl tellurides via SH2 reaction of aryl radicals on tellurium. Molecules 2022 27 3 809 10.3390/molecules27030809 35164075
    [Google Scholar]
  4. Petragnani N. Stefani H.A. Advances in organic tellurium chemistry. Tetrahedron 2005 61 7 1613 1679 10.1016/j.tet.2004.11.076
    [Google Scholar]
  5. Roy A. Panja S. Basu P.K. Kundu D. Synthesis of unsymmetrical diaryl tellurides under mechanical ball milling in room temperature. Curr. Org. Chem. 2024 28 4 319 324 10.2174/0113852728291474240123065931
    [Google Scholar]
  6. Arora A. Oswal P. Sharma D. Purohit S. Tyagi A. Sharma P. Kumar A. Organosulphur, organoselenium and organotellurium compounds for the development of heterogeneous and nanocatalytic systems for Suzuki coupling. Dalton Trans. 2022 51 45 17114 17144 10.1039/D2DT02558B 36367132
    [Google Scholar]
  7. Blödorn G.B. Sacramento M. Sandagorda E.M.A. Lima A.S. Reis J.S. Silva M.S. Alves D. Silver-catalyzed synthesis of symmetrical diaryl tellurides from arylboronic acids and tellurium. New J. Chem. 2022 46 44 21229 21234 10.1039/D2NJ04019K
    [Google Scholar]
  8. Liu J. Tian M. Li Y. Shan X. Li A. Lu K. Fagnoni M. Protti S. Zhao X. Metal-free synthesis of unsymmetrical aryl selenides and tellurides via visible light-driven activation of arylazo sulfones. Eur. J. Org. Chem. 2020 2020 47 7358 7367 10.1002/ejoc.202001386
    [Google Scholar]
  9. Li S. Cao Y. Jiang L. Liu J. Synthesis of diaryl tellurides with sodium aryltellurites under mild conditions. Chem. Asian J. 2024 19 7 e202300993 10.1002/asia.202300993 38438327
    [Google Scholar]
  10. Medina-Cruz D. Tien-Street W. Vernet-Crua A. Zhang B. Huang X. Murali A. Chen J. Liu Y. Garcia-Martin J.M. Cholula-Díaz J.L. Webster T. Tellurium, the forgotten element: A review of the properties, processes, and biomedical applications of the bulk and nanoscale metalloid. Racing Surf 2020 1 723 783 10.1007/978‑3‑030‑34471‑9_26
    [Google Scholar]
  11. Chivers T. Laitinen R.S. Tellurium: A maverick among the chalcogens. Chem. Soc. Rev. 2015 44 7 1725 1739 10.1039/C4CS00434E 25692398
    [Google Scholar]
  12. Cunha R.L.O.R. Gouvea I.E. Juliano L. A glimpse on biological activities of tellurium compounds. An Acad. Bras Cienc 2009 81 3 393 407 10.1590/s0001‑37652009000300006 19722011
    [Google Scholar]
  13. Tripathi A. Khan A. Kiran P. Shetty H. Srivastava R. Screening of AS101 analog, organotellurolate (IV) compound 2 for its in vitro biocompatibility, anticancer, and antibacterial activities. Amino Acids 2023 55 7 891 902 10.1007/s00726‑023‑03280‑7 37227510
    [Google Scholar]
  14. Purohit S. Tyagi A. Oswal P. Bahuguna A. Rawat S. Kumar A. First report on biological activity of heterogenized organotellurium compound and antioxidant activity of its material having Pd nanoparticles on the surface. Inorg. Chem. Commun. 2025 182 115362 10.1016/j.inoche.2025.115362
    [Google Scholar]
  15. Juchem A.L.M. Trindade C. da Silva J.B. Machado M.S. Guecheva T.N. Rocha J.C. Saffi J. de Oliveira I.M. Henriques J.A.P. Escargueil A. Diphenyl ditelluride anticancer activity and DNA topoisomerase I poisoning in human colon cancer HCT116 cells. Oncotarget 2023 14 1 637 649 10.18632/oncotarget.28465 37343056
    [Google Scholar]
  16. Bhardwaj A. Dubey A. Ragusa A. Alam P. Garg S. Bendi A. Organotellurium (IV) complexes as potent antimalarial and antimicrobial agents: Synthesis, biological evaluation, and computational insights. Appl. Organomet. Chem. 2025 39 6 e70206 10.1002/aoc.70206
    [Google Scholar]
  17. Kumar M. Chauhan S. Sindhu M. Darolia P.J. Bhardwaj A. Garg S. Organotellurium(IV) complexes of N-methylisatin-o-aminothiophenol Schiff base: Preparation, characterization, DFT, molecular docking studies, antimicrobial and antioxidant activity. J. Indian Chem. Soc. 2023 100 2 100797 10.1016/j.jics.2022.100797
    [Google Scholar]
  18. Al-joborae F.F.M. Al-Rawi S.S. Ibrahim A.H. Salman A.W. Iqbal M.A. Advances in synthesis and anticancer applications of organo-tellurium compounds. Rev. Inorg. Chem. 2025 45 2 337 358 10.1515/revic‑2024‑0039
    [Google Scholar]
  19. Petreni A. Iacobescu A. Simionescu N. Petrovici A.R. Angeli A. Fifere A. Pinteala M. Supuran C.T. Carbonic Anhydrase inhibitors bearing organotelluride moieties as novel agents for antitumor therapy. Eur. J. Med. Chem. 2022 244 114811 10.1016/j.ejmech.2022.114811 36208508
    [Google Scholar]
  20. Pariagh S. Tasker K.M. Fry F.H. Holme A.L. Collins C.A. Okarter N. Gutowski N. Jacob C. Asymmetric organotellurides as potent antioxidants and building blocks of protein conjugates. Org. Biomol. Chem. 2005 3 6 975 980 10.1039/b500409h 15750638
    [Google Scholar]
  21. Jain S. Batabyal M. Thorat R.A. Choudhary P. Jha R.K. Kumar S. 2-Benzamide tellurenyl iodides: Synthesis and their catalytic role in CO2 mitigation. Chemistry 2023 29 49 e202301502 10.1002/chem.202301502 37338224
    [Google Scholar]
  22. Raju S. Singh H.B. Kumar S. Butcher R.J. Coordination behavior of the tellurium incorporated mercuraazametallamacrocycle and investigation of d10⋅⋅⋅d10 interactions between closed shell (Ag+ Hg2+) metal ions. Chemistry 2023 29 50 e202301322 10.1002/chem.202301322 37317647
    [Google Scholar]
  23. Silva M.S. Ferrarini R.S. Sousa B.A. Toledo F.T. Comasseto J.V. Gariani R.A. Novel cross-coupling reactions between organotellurides and Grignard reagents employing a MnCl2/CuI catalytic system. Tetrahedron Lett. 2012 53 28 3556 3559 10.1016/j.tetlet.2012.04.134
    [Google Scholar]
  24. Matsumura S. Matsui Y. Nagatomo M. Inoue M. Stereoselective construction of anti - and syn -1,2-diol structures via decarbonylative radical coupling of α-alkoxyacyl tellurides. Tetrahedron 2016 72 32 4859 4866 10.1016/j.tet.2016.06.056
    [Google Scholar]
  25. Batabyal M. Jain S. Upadhyay A. Raju S. Kumar S. A base-free copper-assisted synthesis of C2-symmetric spirotelluranes and biaryls based on divergent stoichiometry of Na2Te. Chem. Commun. 2022 58 50 7050 7053 10.1039/D2CC02181A 35647756
    [Google Scholar]
  26. Singh S. Yadav N. Mahala S. Yadav J. Behera K. Rao G.K. Joshi H. Sharma K.N. Metal complexes featuring organotellurium ligands: Synthesis, coordination behavior, and applications. Dalton Trans. 2025 54 20 7970 8014 10.1039/D4DT03502J 40181704
    [Google Scholar]
  27. Usoltsev A.N. Adonin S.A. Novikov A.S. Samsonenko D.G. Sokolov M.N. Fedin V.P. One-dimensional polymeric polybromotellurates (iv): Structural and theoretical insights into halogen⋯halogen contacts. CrystEngComm 2017 19 39 5934 5939 10.1039/C7CE01487B
    [Google Scholar]
  28. Usoltsev A.N. Adonin S.A. Novikov A.S. Abramov P.A. Sokolov M.N. Fedin V.P. Chlorotellurate (iv) supramolecular associates with “trapped” Br2: Features of non-covalent halogen⋯halogen interactions in crystalline phases. CrystEngComm 2020 22 11 1985 1990 10.1039/C9CE01820D
    [Google Scholar]
  29. Korobeynikov N.A. Usoltsev A.N. Sokolov M.N. Novikov A.S. Adonin S.A. Polymeric polyiodo-chlorotellurates (iv): New supramolecular hybrids in halometalate chemistry. CrystEngComm 2024 26 14 2018 2024 10.1039/D4CE00088A
    [Google Scholar]
  30. Usoltsev A.N. Adonin S.A. Abramov P.A. Novikov A.S. Shayapov V.R. Plyusnin P.E. Korolkov I.V. Sokolov M.N. Fedin V.P. 1D and 2D polybromotellurates(IV): Structural studies and thermal stability. Eur. J. Inorg. Chem. 2018 2018 27 3264 3269 10.1002/ejic.201800383
    [Google Scholar]
  31. Usoltsev A.N. Adonin S.A. Novikov A.S. Sokolov M.N. Fedin V.P. Halogen bonding-assisted formation of one-dimensional polybromide–bromotellurate (2-ClPyH)2[TeBr6](Br2). J. Coord. Chem. 2019 72 11 1890 1898 10.1080/00958972.2019.1625040
    [Google Scholar]
  32. Petrov P.A. Filippova E.A. Sukhikh T.S. Sheven D.G. Novikov A.S. Adducts of a sterically hindered tellurium (iv) catecholate with diimines. New J. Chem. 2024 48 35 15483 15492 10.1039/D4NJ02469A
    [Google Scholar]
  33. Petrov P.A. Filippova E.A. Sukhikh T.S. Novikov A.S. Sokolov M.N. Sterically hindered tellurium(IV) catecholate as a lewis acid. Inorg. Chem. 2022 61 24 9184 9194 10.1021/acs.inorgchem.2c00751 35657161
    [Google Scholar]
  34. Il’in M.V. Safinskaya Y.V. Polonnikov D.A. Novikov A.S. Bolotin D.S. Chalcogen- and halogen-bond-donating cyanoborohydrides provide imine hydrogenation. J. Org. Chem. 2024 89 5 2916 2925 10.1021/acs.joc.3c02282 38373196
    [Google Scholar]
  35. Novikov A.S. Plethora of non-covalent interactions in coordination and organometallic chemistry are modern smart tool for materials science, catalysis, and drugs design. Int. J. Mol. Sci. 2022 23 23 14767 10.3390/ijms232314767 36499095
    [Google Scholar]
  36. Novikov A.S. Non-covalent catalysts. Catalysts 2023 13 2 339 10.3390/catal13020339
    [Google Scholar]
  37. Novikov A.S. Bolotin D.S. Halonium, chalconium, and pnictonium salts as noncovalent organocatalysts: A computational study on relative catalytic activity. Org. Biomol. Chem. 2022 20 38 7632 7639 10.1039/D2OB01415G 36111866
    [Google Scholar]
  38. Polonnikov D.A. Il’in M.V. Safinskaya Y.V. Aliyarova I.S. Novikov A.S. Bolotin D.S. (Pre)association as a crucial step for computational prediction and analysis of the catalytic activity of σ-hole donating organocatalysts. Org. Chem. Front. 2022 10 1 169 180 10.1039/D2QO01648F
    [Google Scholar]
  39. Sysoeva A.A. Safinskaya Y.V. Il’in M.V. Novikov A.S. Bolotin D.S. Halonium and chalconium salt-catalyzed Schiff condensation: Kinetics and DFT insights into organocatalyst activity parameters. Org. Biomol. Chem. 2025 23 8 1970 1980 10.1039/D4OB01798F 39834308
    [Google Scholar]
  40. Buslov I.V. Novikov A.S. Khrustalev V.N. Grudova M.V. Kubasov A.S. Matsulevich Z.V. Borisov A.V. Lukiyanova J.M. Grishina M.M. Kirichuk A.A. Serebryanskaya T.V. Kritchenkov A.S. Tskhovrebov A.G. 2-Pyridylselenenyl versus 2-Pyridyltellurenyl halides: Symmetrical chalcogen bonding in the solid state and reactivity towards nitriles. Symmetry 2021 13 12 2350 10.3390/sym13122350
    [Google Scholar]
  41. Vij P. Hardej D. Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. Environ. Toxicol. Pharmacol. 2012 34 3 768 782 10.1016/j.etap.2012.09.009 23068156
    [Google Scholar]
  42. Sandoval J.M. Verrax J. Vásquez C.C. Calderon P.B. A comparative study of tellurite toxicity in normal and cancer cells. Mol. Cell. Toxicol. 2012 8 4 327 334 10.1007/s13273‑012‑0040‑6
    [Google Scholar]
  43. Wieslander E. Engman L. Svensjö E. Erlansson M. Johansson U. Linden M. Andersson C.M. Brattsand R. Antioxidative properties of organotellurium compounds in cell systems. Biochem. Pharmacol. 1998 55 5 573 584 10.1016/S0006‑2952(97)00517‑0 9515568
    [Google Scholar]
  44. Sári D. Ferroudj A. Semsey D. El-Ramady H. Brevik E.C. Prokisch J. Tellurium and nano-tellurium: Medicine or poison? Nanomaterials 2024 14 8 670 10.3390/nano14080670 38668165
    [Google Scholar]
  45. Zambonino M.C. Quizhpe E.M. Jaramillo F.E. Rahman A. Santiago Vispo N. Jeffryes C. Dahoumane S.A. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. Int. J. Mol. Sci. 2021 22 3 989 10.3390/ijms22030989 33498184
    [Google Scholar]
  46. Manimegalai S. Ananthi S. Tamilselvi D. Prabhakaran K. Rathinam R. Gowtham S. Roniboss A. Arul S. Jeevanantham V. Green synthesis of zero-valent tellurium nanoparticles via acalypha indica leaf extracts and its application for photocatalytic degradation of safranin O dye in aqueous system. ChemistrySelect 2025 10 34 e00910 10.1002/slct.202500910
    [Google Scholar]
  47. Vahidi H. Kobarfard F. Alizadeh A. Saravanan M. Barabadi H. Green nanotechnology-based tellurium nanoparticles: Exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium tellurite. Inorg. Chem. Commun. 2021 124 108385 10.1016/j.inoche.2020.108385
    [Google Scholar]
  48. Nandihalli N. Gregory D.H. Mori T. Energy-saving pathways for thermoelectric nanomaterial synthesis: Hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing. Adv. Sci. 2022 9 25 2106052 10.1002/advs.202106052 35843868
    [Google Scholar]
  49. Tiekink E.R.T. Therapeutic potential of selenium and tellurium compounds: Opportunities yet unrealised. Dalton Trans. 2012 41 21 6390 6395 10.1039/c2dt12225a 22252404
    [Google Scholar]
  50. Kundu D. Roy T. Mahata A. Recent advances in copper-catalyzed carbon chalcogenides cross- coupling reactions. Curr. Org. Synth. 2023 20 3 267 277 10.2174/1570179419666220324122735 35331115
    [Google Scholar]
  51. Barcellos A.M. Sacramento M. da Costa G.P. Perin G. João Lenardão E. Alves D. Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coord. Chem. Rev. 2021 442 214012 10.1016/j.ccr.2021.214012
    [Google Scholar]
  52. Mahata A. Roy T. Mondal A. Kundu D. Carbon-chalcogenide cross-coupling reactions in water. Curr. Green Chem. 2024 11 4 325 335 10.2174/0122133461302866240308045200
    [Google Scholar]
  53. Ong C.L. Titinchi S. Juan J.C. Khaligh N.G. An overview of recent advances in the synthesis of organic unsymmetrical disulfides. Helv. Chim. Acta 2021 104 8 e2100053 10.1002/hlca.202100053
    [Google Scholar]
  54. Kundu D. Mahata A. Roy T. Synthesis of aryl/heteroaryl selenides using transition metals catalyzed cross coupling and C—H activation. Curr. Org. Chem. 2022 26 15 1470 1484 10.2174/1385272827666221103104321
    [Google Scholar]
  55. Kundu D. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Advances 2021 11 12 6682 6698 10.1039/D0RA10629A 35423206
    [Google Scholar]
  56. Potapov V.A. Organic diselenides, ditellurides, polyselenides and polytellurides. Synthesis and reactions. PATAI’s Chemistry of Functional Groups. John Wiley & Sons 2013 10.1002/9780470682531.pat0716
    [Google Scholar]
  57. Beletskaya I.P. Ananikov V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev. 2011 111 3 1596 1636 10.1021/cr100347k 21391564
    [Google Scholar]
  58. Liu Y. Zhao H. Liu L. Redox dual-responsive diaryl ditelluride-containing nanoparticles as peroxidase mimetics. Eur. Polym. J. 2024 212 113048 10.1016/j.eurpolymj.2024.113048
    [Google Scholar]
  59. Singh D. Deobald A.M. Camargo L.R.S. Tabarelli G. Rodrigues O.E.D. Braga A.L. An efficient one-pot synthesis of symmetrical diselenides or ditellurides from halides with CuO nanopowder/Se0 or Te0/base. Org. Lett. 2010 12 15 3288 3291 10.1021/ol100558b 20586442
    [Google Scholar]
  60. Szabó T. Szeri A. Dékány I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 2005 43 1 87 94 10.1016/j.carbon.2004.08.025
    [Google Scholar]
  61. Varela-Rizo H. Martín-Gullón I. Terrones M. Hybrid films with graphene oxide and metal nanoparticles could now replace indium tin oxide. ACS Nano 2012 6 6 4565 4572 10.1021/nn302221q 22686543
    [Google Scholar]
  62. Nandihalli N. Microwave-driven synthesis and modification of nanocarbons and hybrids in liquid and solid phases. J. Energy Storage 2025 111 115315 10.1016/j.est.2025.115315
    [Google Scholar]
  63. Kassaee M.Z. Motamedi E. Movassagh B. Poursadeghi S. Iron-catalyzed formation of C—Se and C—Te bonds through cross coupling of aryl halides with Se(0) and Te(0)/nano-Fe3O4@GO. Synthesis 2013 45 16 2337 2342 10.1055/s‑0033‑1338488
    [Google Scholar]
  64. Deng Y. Zeng X. Xu H. Liu J. Zhang J. Hu D. Xie J. Highly efficient synthesis of diselenides and ditellurides catalyzed by polyoxomolybdate-based copper. New J. Chem. 2022 46 42 20078 20081 10.1039/D2NJ04560E
    [Google Scholar]
  65. Chen C.L. Li J.C. Liu M.C. Zhou Y.B. Wu H-Y. Metal-free synthesis of diselenides and ditellurides by using TMSCN. Tetrahedron Lett. 2022 113 154255 10.1016/j.tetlet.2022.154255
    [Google Scholar]
  66. Cai J. Shen W. Cen K. Zeng Z. Synthesis of diaryl diselenides and ditellurides via bromide-catalyzed C—Se/C—Te bond formation using Se/Te powder and boronic acid. Synlett 2025 36 7 835 840 10.1055/a‑2420‑2617
    [Google Scholar]
  67. Mugesh G. Singh H.B. Heteroatom-directed aromatic lithiation: A versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res. 2002 35 4 226 236 10.1021/ar010091k 11955051
    [Google Scholar]
  68. Bhasin K.K. Singh N. Doomra S. Arora E. Ram G. Singh S. Nagpal Y. Mehta S.K. Klapotke T.M. Regioselective synthesis of bis(2-halo-3-pyridyl) dichalcogenides (E = S, Se and Te): Directed ortho-lithiation of 2-halopyridines. Bioinorg. Chem. Appl. 2007 2007 1 9 10.1155/2007/69263 17611613
    [Google Scholar]
  69. Bhasin K.K. Arora E. Kaur K. Kang S.K. Gobel M. Klapoetke T.M. Mehta S.K. Preparation and characterization of bis[4-dimethylamino-2-pyrimidyl] dichalcogenides (S, Se, Te): X-ray crystal structure of bis[4-dimethylamino-2-pyrimidyl] diselenide and its physicochemical behavior in microemulsion media. Tetrahedron 2009 65 1 247 252 10.1016/j.tet.2008.10.069
    [Google Scholar]
  70. Borisov A.V. Matsulevich Z.V. Osmanov V.K. Borisova G.N. Chizhov A.O. Mammadova G.Z. Maharramov A.M. Aisin R.R. Khrustalev V.N. Diorganyl ditellurides with intramolecular coordination bonds: Synthesis and structure of bis(4,6-dimethylpyrimidin-2-yl) ditelluride. Russ. Chem. Bull. 2013 62 8 1877 1881 10.1007/s11172‑013‑0270‑3
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372439058251211080745
Loading
/content/journals/cocat/10.2174/0122133372439058251211080745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test