Skip to content
2000
image of Synthesis of 1,4-Disubstituted-1,2,3-Triazoles via Copper(I)-catalyzed Azide-alkyne Cycloaddition Reaction and Computational Study of the Effect of Substituents on the Reactivity of Aromatic Azides as Precursors of 1,2,3-triazoles

Abstract

Introduction

Organic azides are valuable precursors of 1,2,3-triazoles, a class of heterocyclic compounds with broad biological relevance and diverse applications as functional materials. The understanding of the electronic effects of substituents on azide reactivity is crucial for optimizing copper(I)-catalyzed azide–alkyne cycloaddition processes.

Methods

A series of 1,2,3-triazoles were synthesized copper(I)-catalyzed azide–alkyne cycloaddition employing microwave radiation as an alternative energy source. Computational studies were performed using Molecular Electrostatic Potential maps and the dual descriptor at the B3LYP/6-311G(d,p) level of theory to analyze the electronic structure of the aromatic azides employed as precursors of 1,2,3-triazoles.

Results

Compounds 3a and 3e-g were obtained in moderate to good yields (72-78%), whereas strongly electron-withdrawing substituents avoided the formation of products 3b-d. The computational analysis revealed differences in the distribution charge on the azide group.

Discussion

The absence of products 3b-d is attributed to the presence of strong electron-withdrawing substituents. According to the dual descriptor, the formation of the metallacycle between azide and alkyne is favored when Nb and Ng exhibit predominantly electrophilic and nucleophilic characters, respectively, which promotes the mesomeric effect of the azide.

Conclusion

The molecular electrostatic potential maps and dual descriptor revealed that for the evaluated compounds, electron-withdrawing substituents modify the distribution of the electronic density on the azide group. The phenylazides with enhanced positive character at Nβ and higher electron density at Nγ showed better reactivity toward triazole formation. The integration of experimental and computational approaches provides insights into the electronic effects in azide reactivity and supports the design of 1,2,3-triazole compounds.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372438110251129094807
2026-01-14
2026-01-31
Loading full text...

Full text loading...

References

  1. Bräse S. Banert K. Organic Azides. John Wiley & Sons 2011
    [Google Scholar]
  2. Abbenante G. Le G.T. Fairlie D.P. Unexpected photolytic decomposition of alkyl azides under mild conditions. Chem. Commun. 2007 43 43 4501 4503 10.1039/b708134k 17971969
    [Google Scholar]
  3. Schock M. Bräse S. Reactive & efficient: Organic azides as cross-linkers in material sciences. Molecules 2020 25 4 1009 10.3390/molecules25041009 32102403
    [Google Scholar]
  4. Moss R. Platz M. Jones M. Reactive intermediate chemistry. John Wiley & Sons 2004
    [Google Scholar]
  5. Burton N.R. Kim P. Backus K.M. Photoaffinity labelling strategies for mapping the small molecule–protein interactome. Org. Biomol. Chem. 2021 19 36 7792 7809 10.1039/D1OB01353J 34549230
    [Google Scholar]
  6. Zhang Y. Tan J. Chen Y. Visible-light-induced protein labeling in live cells with aryl azides. Chem. Commun. 2023 59 17 2413 2420 10.1039/D2CC06987C 36744609
    [Google Scholar]
  7. Chiu P.H. Huang W. Hsu H.T. Huang W.F. Wu Y.T. Rachel Cheng T-J. Fang J-M. Designing a bis-azide photoaffinity probe in labeling influenza nucleoprotein trimer to give an insight into the binding mode. Eur. J. Med. Chem. Rep. 2022 6 100091 10.1016/j.ejmcr.2022.100091
    [Google Scholar]
  8. Novikov A.S. Kuznetsov M.L. Theoretical study of Re(IV) and Ru(II) bis-isocyanide complexes and their reactivity in cycloaddition reactions with nitrones. Inorg. Chim. Acta 2012 380 78 89 10.1016/j.ica.2011.08.016
    [Google Scholar]
  9. Melekhova A.A. Smirnov A.S. Novikov A.S. Panikorovskii T.L. Bokach N.A. Kukushkin V.Y. Copper(I)-catalyzed 1,3-dipolar cycloaddition of ketonitrones to dialkylcyanamides: A step toward sustainable generation of 2,3-dihydro-1,2,4-oxadiazoles. ACS Omega 2017 2 4 1380 1391 10.1021/acsomega.7b00130 31457510
    [Google Scholar]
  10. Sirotkina E.V. Efremova M.M. Novikov A.S. Zarubaev V.V. Orshanskaya I.R. Starova G.L. Kostikov R.R. Molchanov A.P. Regio- and diastereoselectivity of the cycloaddition of aldonitrones with benzylidenecyclopropane: An experimental and theoretical study. Tetrahedron 2017 73 21 3025 3030 10.1016/j.tet.2017.04.014
    [Google Scholar]
  11. Efremova M.M. Novikov A.S. Kostikov R.R. Panikorovsky T.L. Ivanov A.V. Molchanov A.P. Regio- and diastereoselectivity of the cycloaddition of nitrones with N-propadienylindole and pyrroles. Tetrahedron 2018 74 1 174 183 10.1016/j.tet.2017.11.056
    [Google Scholar]
  12. Dmitriev V.A. Efremova M.M. Novikov A.S. Zarubaev V.V. Slita A.V. Galochkina A.V. Starova G.L. Ivanov A.V. Molchanov A.P. Highly efficient and stereoselective cycloaddition of nitrones to indolyl- and pyrrolylacrylates. Tetrahedron Lett. 2018 59 24 2327 2331 10.1016/j.tetlet.2018.04.066
    [Google Scholar]
  13. a Kinzhalov M.A. Legkodukh A.S. Anisimova T.B. Novikov A.S. Suslonov V.V. Luzyanin K.V. Kukushkin V.Y. Tetrazol-5-ylidene gold(III) complexes from sequential [2 + 3] cycloaddition of azide to metal-bound isocyanides and N4 alkylation. Organometallics 2017 36 20 3974 3980 10.1021/acs.organomet.7b00591
    [Google Scholar]
  14. b Kinzhalov M.A. Novikov A.S. Luzyanin K.V. Haukka M. Pombeiro A.J.L. Kukushkin V.Y. PdII-mediated integration of isocyanides and azide ions might proceed via formal 1,3-dipolar cycloaddition between RNC ligands and uncomplexed azide. New J. Chem. 2016 40 1 521 527 10.1039/C5NJ02564H
    [Google Scholar]
  15. Efremova M.M. Molchanov A.P. Novikov A.S. Starova G.L. Muryleva A.A. Slita A.V. Zarubaev V.V. 1,3-Dipolar cycloaddition of N-allyl substituted polycyclic derivatives of isoindole-1,3-dione with nitrones and nitrile oxides: An experimental and theoretical investigation. Tetrahedron 2020 76 15 131104 10.1016/j.tet.2020.131104
    [Google Scholar]
  16. Abuduaini T. Roy V. Marlet J. Gaudy-Graffin C. Brand D. Baronti C. Touret F. Coutard B. McBrayer T.R. Schinazi R.F. Agrofoglio L.A. Synthesis and antiviral evaluation of (1,4-disubstituted-1,2,3-Triazol)-(E)-2-methyl-but-2-enyl nucleoside phosphonate prodrugs. Molecules 2021 26 5 1493 1493 10.3390/molecules26051493 33803417
    [Google Scholar]
  17. Bozorov K. Zhao J. Aisa H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019 27 16 3511 3531 10.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  18. Nayl A.A. Aly A.A. Arafa W.A.A. Ahmed I.M. Abd-Elhamid A.I. El-Fakharany E.M. Abdelgawad M.A. Tawfeek H.N. Bräse S. Azides in the synthesis of various heterocycles. Molecules 2022 27 12 3716 10.3390/molecules27123716 35744839
    [Google Scholar]
  19. Dheer D. Singh V. Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem. 2017 71 30 54 10.1016/j.bioorg.2017.01.010 28126288
    [Google Scholar]
  20. Slavova K.I. Todorov L.T. Belskaya N.P. Palafox M.A. Kostova I.P. Developments in the application of 1,2,3-triazoles in cancer treatment. Recent Patents Anticancer Drug Discov. 2020 15 2 92 112 10.2174/1574892815666200717164457 32679022
    [Google Scholar]
  21. Joseph M.C. Swarts A.J. Mapolie S.F. Transition metal complexes of click-derived 1,2,3-triazoles as catalysts in various transformations: An overview and recent developments. Coord. Chem. Rev. 2023 493 215317 10.1016/j.ccr.2023.215317
    [Google Scholar]
  22. Devi S. Kumar A. Prajapat A. Dahiya H. Kumar R. Lal K. Singh P. Investigation of the corrosion inhibition ability of 1,2,3‐triazole‐based isatin through experimental and in silico studies. ChemistrySelect 2025 10 23 e00722 10.1002/slct.202500722
    [Google Scholar]
  23. de Oliveira M.B. Gazolla P.A.R. Meireles L.M. Teixeira R.R. Silva D.A. Barbosa L.C.A. Morais B.P.A. Oliveira O.V. Nascimento C.J. Barrela A.P.H. Junker J. dos Santos N.A. Romão W. Lacerda V. Júnior W.C.J. Gomide Mizubuti E.S. de Queiroz V.T. Profeti D. Moraes W.B. Scherer R. Costa A.V. Design and synthesis of thymol derivatives bearing a 1,2,3-triazole moiety for papaya protection against Fusarium solani. J. Agric. Food Chem. 2025 73 23 14290 14299 10.1021/acs.jafc.4c12770 40458957
    [Google Scholar]
  24. Zhou M.J. Zhang W.T. Li Z. Feng T. Lan S. Peng Z. Chen S.Q. Fe-based metallic glass as heterogeneous Fenton-like catalyst for azo dyes degradation: Effect of inorganic anions. Rare Met. 2023 42 10 3443 3454 10.1007/s12598‑023‑02327‑8
    [Google Scholar]
  25. Liu C. Zheng L. Xiang D. Liu S. Xu W. Luo Q. Shu Y. Ouyang Y. Lin H. Palladium supported on triazolyl-functionalized hypercrosslinked polymers as a recyclable catalyst for Suzuki–Miyaura coupling reactions. RSC Advances 2020 10 29 17123 17128 10.1039/D0RA01190H 35521468
    [Google Scholar]
  26. Zhou X.C. Chen S.Q. Zhou M.J. Li M. Lan S. Feng T. Highly efficient cobalt-based amorphous catalyst for peroxymonosulfate activation toward wastewater remediation. Rare Met. 2023 42 4 1160 1174 10.1007/s12598‑022‑02220‑w
    [Google Scholar]
  27. Wen J. Chen S.Q. Zhu X. Wu X. Peng H. Li B. Zhu H. Feng T. Lan S. Highly efficient non-enzyme glucose sensing by multi-component CuCoNiFeSi alloy with feather-like CuxO. Rare Met. 2025 44 9 6471 6482 10.1007/s12598‑025‑03401‑z
    [Google Scholar]
  28. Huisgen R. 1,3‐Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl. 1963 2 10 565 598 10.1002/anie.196305651
    [Google Scholar]
  29. Majid M.H. Mehrnoush T. Hoda Y. Tayebeh H. Huisgen’s cycloaddition reactions: A full perspective. Curr. Org. Chem. 2016 20 15 1591 1647 10.2174/1385272820666151217183010
    [Google Scholar]
  30. Danese M. Bon M. Piccini G. Passerone D. The reaction mechanism of the azide–alkyne Huisgen cycloaddition. Phys. Chem. Chem. Phys. 2019 21 35 19281 19287 10.1039/C9CP02386K 31451823
    [Google Scholar]
  31. Pribut N. Veale C.G.L. Basson A.E. van Otterlo W.A.L. Pelly S.C. Application of the Huisgen cycloaddition and ‘click’ reaction toward various 1,2,3-triazoles as HIV non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 15 3700 3704 10.1016/j.bmcl.2016.05.082 27287366
    [Google Scholar]
  32. Rostovtsev V.V. Green L.G. Fokin V.V. Sharpless K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002 41 14 2596 2599 10.1002/1521‑3773(20020715)41:14<2596:AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  33. Tornøe C.W. Christensen C. Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002 67 9 3057 3064 10.1021/jo011148j 11975567
    [Google Scholar]
  34. Devaraj N.K. Finn M.G. Introduction: Click chemistry. Chem. Rev. 2021 121 12 6697 6698 10.1021/acs.chemrev.1c00469 34157843
    [Google Scholar]
  35. Mitchell L.T. Barnett E. Hexom M. Ruiz A. Schoffstall A. Microwave-assisted synthesis of symmetrical 1,4-disubstituted bis-1h-1,2,3-triazoles using copper N-heterocyclic carbene catalysts. Catalysts 2024 14 10 702 10.3390/catal14100702
    [Google Scholar]
  36. Librando I.L. Mahmoud A.G. Carabineiro S.A.C. Guedes da Silva M.F.C. Geraldes C.F.G.C. Pombeiro A.J.L. The catalytic activity of carbon-supported Cu(I)-phosphine complexes for the microwave-assisted synthesis of 1,2,3-triazoles. Catalysts 2021 11 2 185 10.3390/catal11020185
    [Google Scholar]
  37. Nesaragi A.R. Kamble R.R. Bayannavar P.K. Metre T.V. Kariduraganavar M.Y. Margankop S.B. Joshi S.D. Kumbar V.M. Microwave facilitated one-pot three component synthesis of coumarin-benzoxazole clubbed 1,2,3-triazoles: Antimicrobial evaluation, molecular docking and in silico ADME studies. Synth. Commun. 2021 51 22 3460 3472 10.1080/00397911.2021.1980806
    [Google Scholar]
  38. George N. Singh G. Singh R. Singh G. Anita Devi; Singh, H.; Kaur, G.; Singh, J. Microwave accelerated green approach for tailored 1,2,3–triazoles via CuAAC. Sustain. Chem. Pharm. 2022 30 100824 10.1016/j.scp.2022.100824
    [Google Scholar]
  39. Barge A. Tagliapietra S. Binello A. Cravotto G. Click chemistry under microwave or ultrasound irradiation. Curr. Org. Chem. 2011 15 2 189 203 10.2174/138527211793979826
    [Google Scholar]
  40. Fantoni N.Z. El-Sagheer A.H. Brown T. A Hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev. 2021 121 12 7122 7154 10.1021/acs.chemrev.0c00928 33443411
    [Google Scholar]
  41. Li X. Xiong Y. Application of “Click” chemistry in biomedical hydrogels. ACS Omega 2022 7 42 36918 36928 10.1021/acsomega.2c03931 36312409
    [Google Scholar]
  42. Meyer J.P. Adumeau P. Lewis J.S. Zeglis B.M. Click chemistry and radiochemistry: The first 10 years. Bioconjug. Chem. 2016 27 12 2791 2807 10.1021/acs.bioconjchem.6b00561 27787983
    [Google Scholar]
  43. Agrahari A.K. Bose P. Jaiswal M.K. Rajkhowa S. Singh A.S. Hotha S. Mishra N. Tiwari V.K. Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev. 2021 121 13 7638 7956 10.1021/acs.chemrev.0c00920 34165284
    [Google Scholar]
  44. Parker C.G. Pratt M.R. Click chemistry in proteomic investigations. Cell 2020 180 4 605 632 10.1016/j.cell.2020.01.025 32059777
    [Google Scholar]
  45. Meghani N.M. Amin H.H. Lee B.J. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov. Today 2017 22 11 1604 1619 10.1016/j.drudis.2017.07.007 28754291
    [Google Scholar]
  46. Wang C. Yang J. Lu Y. Click chemistry as a connection tool: Grand opportunities and challenges. Chin. J. Catal. 2023 49 8 15 10.1016/S1872‑2067(23)64434‑1
    [Google Scholar]
  47. Kumar G.S. Lin Q. Light-triggered click chemistry. Chem. Rev. 2021 121 12 6991 7031 10.1021/acs.chemrev.0c00799 33104332
    [Google Scholar]
  48. Chen M.M. Kopittke P.M. Zhao F.J. Wang P. Applications and opportunities of click chemistry in plant science. Trends Plant Sci. 2024 29 2 167 178 10.1016/j.tplants.2023.07.003 37612212
    [Google Scholar]
  49. Sletten E.M. Bertozzi C.R. From mechanism to mouse: A tale of two bioorthogonal reactions. Acc. Chem. Res. 2011 44 9 666 676 10.1021/ar200148z 21838330
    [Google Scholar]
  50. Hartung K.M. Sletten E.M. Bioorthogonal chemistry: Bridging chemistry, biology, and medicine. Chem 2023 9 8 2095 2109 10.1016/j.chempr.2023.05.016 39006002
    [Google Scholar]
  51. Scinto S.L. Bilodeau D.A. Hincapie R. Lee W. Nguyen S.S. Xu M. am Ende, C.W.; Finn, M.G.; Lang, K.; Lin, Q.; Pezacki, J.P.; Prescher, J.A.; Robillard, M.S.; Fox, J.M. Bioorthogonal chemistry. Nat. Rev. Methods Primers 2021 1 1 30 10.1038/s43586‑021‑00028‑z 34585143
    [Google Scholar]
  52. Ben El Ayouchia H. Bahsis L. Anane H. Domingo L.R. Stiriba S.E. Understanding the mechanism and regioselectivity of the copper(i) catalyzed [3 + 2] cycloaddition reaction between azide and alkyne: A systematic DFT study. RSC Advances 2018 8 14 7670 7678 10.1039/C7RA10653J 35539150
    [Google Scholar]
  53. Héron J. Balcells D. Concerted cycloaddition mechanism in the CuAAC reaction catalyzed by 1,8-naphthyridine dicopper complexes. ACS Catal. 2022 12 8 4744 4753 10.1021/acscatal.2c00723
    [Google Scholar]
  54. Zhu L. Brassard C.J. Zhang X. Guha P.M. Clark R.J. On the mechanism of Copper(I)-catalyzed azide-alkyne cycloaddition. Chem. Rec. 2016 16 3 1501 1517 10.1002/tcr.201600002 27216993
    [Google Scholar]
  55. Worrell B.T. Malik J.A. Fokin V.V. Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science 2013 340 6131 457 460 10.1126/science.1229506 23558174
    [Google Scholar]
  56. Reisi-Vanani A. Rahimi S. Kokhdan S.N. Ebrahimpour-Komleh H. Computational study of the gas phase reaction of hydrogen azide and corannulene: A DFT study. Comput. Theor. Chem. 2015 1070 94 101 10.1016/j.comptc.2015.08.004
    [Google Scholar]
  57. Lee J. Min K.A. Hong S. Kim G. Ab initio study of adsorption properties of hazardous organic molecules on graphene: Phenol, phenyl azide, and phenylnitrene. Chem. Phys. Lett. 2015 618 57 62 10.1016/j.cplett.2014.10.064
    [Google Scholar]
  58. Yang J. Gong X. Wang G. 1H/2and azide/tetrazole isomerizations and their effects on the aromaticity and stability of azido triazoles. RSC Advances 2015 5 13 9503 9509 10.1039/C4RA14560G
    [Google Scholar]
  59. Molteni G. Ponti A. The azide-allene dipolar cycloaddition: Is DFT able to predict site- and regio-selectivity? Molecules 2021 26 4 928 10.3390/molecules26040928 33578668
    [Google Scholar]
  60. Atta-Kumi J. Pipim G.B. Tia R. Adei E. Investigating the site-, regio-, and stereo-selectivities of the reactions between organic azide and 7-heteronorbornadiene: A DFT mechanistic study. J. Mol. Model. 2021 27 9 248 10.1007/s00894‑021‑04857‑3 34387742
    [Google Scholar]
  61. Shoaf A.L. Bayse C.A. The effect of nitro groups on N2 extrusion from aromatic azide-based energetic materials. New J. Chem. 2019 43 38 15326 15334 10.1039/C9NJ03220G
    [Google Scholar]
  62. Teimouri A. Chermahini A.N. Emami M. Synthesis, spectroscopic characterization and DFT calculations on [4-(sulfonylazide)phenyl]-1-azide. ARKIVOC 2008 2008 12 172 187 10.3998/ark.5550190.0009.c19
    [Google Scholar]
  63. Abu-Eittah R.H. Khedr M.K. Goma M. Zordok W. The structure of cinnamic acid and cinnamoyl azides, a unique localized π system: The electronic spectra and DFT‐treatment. Int. J. Quantum Chem. 2012 112 5 1256 1272 10.1002/qua.23120
    [Google Scholar]
  64. Xie S. Sundhoro M. Houk K.N. Yan M. Electrophilic azides for materials synthesis and chemical biology. Acc. Chem. Res. 2020 53 4 937 948 10.1021/acs.accounts.0c00046 32207916
    [Google Scholar]
  65. Budyka M.F. Oshkin I.V. Theoretic investigation of the size and charge effects in photochemistry of heteroaromatic azides. J. Mol. Struct. THEOCHEM 2006 759 1-3 137 144 10.1016/j.theochem.2005.11.014
    [Google Scholar]
  66. Levine I. Quantum chemistry. Pearson Education 2001
    [Google Scholar]
  67. Morell C. Grand A. Toro-Labbé A. New dual descriptor for chemical reactivity. J. Phys. Chem. A 2005 109 1 205 212 10.1021/jp046577a 16839107
    [Google Scholar]
  68. Morell C. Grand A. Toro-Labbé A. Theoretical support for using the Δf(r) descriptor. Chem. Phys. Lett. 2006 425 4-6 342 346 10.1016/j.cplett.2006.05.003
    [Google Scholar]
  69. Martínez-Araya J.I. Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions? J. Math. Chem. 2015 53 2 451 465 10.1007/s10910‑014‑0437‑7
    [Google Scholar]
  70. Morell C. Guégan F. Merzoud L. Chermette H. A perspective on the so-called dual descriptor. In Chemical Reactivity in Confined Systems: Theory, Modelling and Applications. Wiley 2021 99 112 10.1002/9781119683353.ch6
    [Google Scholar]
  71. Fernández L. Ruidiaz M. Pérez L. Pérez-Gamboa A. Structural, spectroscopic and optical properties of 4-(6-(dimethylamino)benzo[d]thiazol-2-yl)benzonitrile as a model of system D-E-A by computational methods. Prospectiva 2018 16 1 114 123 10.15665/rp.v16i1.1548
    [Google Scholar]
  72. Murray J. Politzer P. The electrostatic potential as a guide to mo-lecular interactive behavior; CRC Press eBooks, 2009 17 243 54 10.1201/9781420065442.ch17
  73. Frisch, Gaussian 09, Revision A.02. 2009 Available from:https://www.scienceopen.com/document?vid=6be7271f-f651-464b-aee6-ef20b0743b6b
  74. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993 98 7 5648 5652 10.1063/1.464913
    [Google Scholar]
  75. Lee C. Yang W. Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988 37 2 785 789 10.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  76. Perdew J.P. Burke K. Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996 77 18 3865 3868 10.1103/PhysRevLett.77.3865 10062328
    [Google Scholar]
  77. Takayama T. Kawano M. Uekusa H. Ohashi Y. Sugawara T. CCDC 203791: Experimental crystal structure determination. Helv. Chim. Acta 2003 86 1352 10.5517/cc6v1xz
    [Google Scholar]
  78. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
  79. Hernández-López H. Leyva-Ramos S. Azael Gómez-Durán C.F. Pedraza-Alvarez A. Rodríguez-Gutiérrez I.R. Leyva-Peralta M.A. Razo-Hernández R.S. Synthesis of 1,4-Biphenyl-triazole derivatives as possible 17β-HSD1 inhibitors: An in silico study. ACS Omega 2020 5 23 14061 14068 10.1021/acsomega.0c01519 32566872
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372438110251129094807
Loading
/content/journals/cocat/10.2174/0122133372438110251129094807
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: dual descriptor ; microwave ; 1,2,3-triazoles ; click chemistry ; Azides ; DFT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test