Skip to content
2000
image of Exploring the Role of Benzimidazole-Containing Scaffolds for the Design of New Compounds in Drug Discovery

Abstract

Introduction

Benzimidazole and its derivatives are among the most popular structures used in pharmaceutical and medicinal chemistry for drug discovery, particularly within the wide variety of heterocycles. Benzimidazole has a preferred structure in drug discovery due to its distinct structural characteristics and the diverse biological actions of its derivatives.

Methods

This study highlights the significance of this moiety due to its broad range of biological features and the widespread use of benzimidazole.

Results

This review consolidates extensive research conducted from 1990 to 2025, highlighting benzimidazole derivatives as key pharmacophores across diverse therapeutic areas. Benzimidazole compounds exhibit multifaceted anti-inflammatory, analgesic, antiviral, anticancer, antioxidant, and anthelmintic activities, indicating their systemic benefits.

Discussion

In many drugs used to treat conditions such as cancer, microbial infections, inflammatory disorders, hypertension, and malaria, the benzimidazole ring structure exhibits a broad range of pharmacological activity. Additionally, this fused heterocycle benzimidazole core may interact with various anions and cations, as well as biomolecules, in the human body to produce a range of biological activities, including antidepressant, antiviral, antibacterial, antifungal, anti-inflammatory, and analgesic effects.

Conclusion

This review focuses on benzimidazole derivatives and their effects on different sites of action, as well as contemporary developments in drug design and development.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372412200250929105104
2025-10-28
2025-12-16
Loading full text...

Full text loading...

References

  1. He Y. Wu B. Yang J. Robinson D. Risen L. Ranken R. Blyn L. Sheng S. Swayze E.E. 2-Piperidin-4-yl-benzimidazoles with broad spectrum antibacterial activities. Bioorg. Med. Chem. Lett. 2003 13 19 3253 3256 10.1016/S0960‑894X(03)00661‑9 12951103
    [Google Scholar]
  2. Metwally K.A. Abdel-Aziz L.M. Lashineel-SM, Husseiny MI and Badawy RH. Hydrazones of 2-aryl-4-carboxylic acid hydrazides: synthesis and preliminary evaluation as antimicrobial agents. Bioorg. Med. Chem. 2006 14 24 8675 8682 10.1016/j.bmc.2006.08.022 16949294
    [Google Scholar]
  3. a Rajasekhar S. Maiti B. Balamurali M.M. Chanda K. Synthesis and medicinal applications of benzimidazoles: An overview. Curr. Org. Synth. 2017 14 1 40 60 10.2174/1570179413666160818151932
    [Google Scholar]
  4. b Tiwari A.K. Mishra A.K. Bajpai A. Mishra P. Singh S. Sinha D. Singh V.K. Synthesis and evaluation of novel benzimidazole derivative [Bz-Im] and its radio/biological studies. Bioorg. Med. Chem. Lett. 2007 17 10 2749 2755 10.1016/j.bmcl.2007.02.071 17368898
    [Google Scholar]
  5. Patil A. Ganguly S. Surana S. A systematic review of benzimidazole derivatives as an antiulcer agent. Rasayan J. Chem. 2008 1 3 447 460
    [Google Scholar]
  6. Gajanan G. Shital S. Vipul T. Babar V. Dnyaneshwar J. Vaibhav D. Vaibhav C. A review on benzimidazole and it’s biological activities. J. Pharm. Chem. Drug Formul. 2021 3 1
    [Google Scholar]
  7. Kubo K. Oda K. Kaneko T. Satoh H. Nohara A. Synthesis of 2-(((4-fluoroalkoxy-2-pyridyl)methyl)sulfinyl)-1H-benzimidazoles as antiulcer agents. Chem. Pharm. Bull. (Tokyo) 1990 38 10 2853 2858 10.1248/cpb.38.2853 2076571
    [Google Scholar]
  8. Uchida M. Chihiro M. Morita S. Yamashita H. Yamasaki K. Kanbe T. Yabuuchi Y. Nakagawa K. Synthesis and antiulcer activity of 4-substituted 8-[(2-benzimidazolyl)sulfinylmethyl]-1,2,3,4-tetrahydroquinoli nes and related compounds. Chem. Pharm. Bull. 1990 38 6 1575 1586 10.1248/cpb.38.1575 2170036
    [Google Scholar]
  9. Wright J.B. The chemistry of the benzimidazoles. Chem. Rev. 1951 48 3 397 541 10.1021/cr60151a002 24541208
    [Google Scholar]
  10. Marinescu M. Chemistry and Applications of Benzimidazole and its Derivatives. IntechOpen 2019 10.5772/intechopen.81426
    [Google Scholar]
  11. Mehra A. Sangwan R. Synthesis and pharmacological properties of the benzimidazole scaffold: A patent review. ChemistrySelect 2023 8 45 e202300537 10.1002/slct.202300537
    [Google Scholar]
  12. Mavvaji M. Akkoc S. Recent advances in the anticancer applications of benzimidazole derivatives. ChemistrySelect 2023 8 35 e202302561 10.1002/slct.202302561
    [Google Scholar]
  13. Barker H.A. Smyth R.D. Weissbach H. Toohey J.I. Ladd J.N. Volcani B.E. Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5, 6-dimethylbenzimidazole. J. Biol. Chem. 1960 235 2 480 488 10.1016/S0021‑9258(18)69550‑X 13796809
    [Google Scholar]
  14. Zafari S. Ghorbani-Vaghei R. Alavinia S. Poly(sulfonamide-thiourea) grafted γ-Fe2O3@talc as a green catalyst for the synthesis of substituted tetrahydropyridines. Mater. Chem. Phys. 2021 270 124840 10.1016/j.matchemphys.2021.124840
    [Google Scholar]
  15. Kharazmi A. Ghorbani-Vaghei R. Kharazmi A. Azadbakht R. Koolivand M. Karakaya I. Karimi-Nami R. Reduced graphene oxide/palladium nanoparticle bonded to N,N′-bis(2-aminophenyl)-1,2-ethanediamine: a new, highly efficient and recyclable heterogeneous catalyst for direct synthesis of 2-substituted benzimidazoles via acceptorless dehydrogenative coupling of alcohols and aromatic diamine. Res. Chem. Intermed. 2023 49 6 2277 2298 10.1007/s11164‑023‑05003‑9
    [Google Scholar]
  16. Ghorbani-Choghamarani A. Mohammadi M. Shiri L. Taherinia Z. Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res. Chem. Intermed. 2019 45 11 5705 5723 10.1007/s11164‑019‑03930‑0
    [Google Scholar]
  17. Kazemi M. Mohammadi M. Magnetically recoverable catalysts: catalysis in synthesis of polyhydroquinolines. Appl. Organomet. Chem. 2020 34 3 e5400 10.1002/aoc.5400
    [Google Scholar]
  18. El-masry A.H. Fahmy H.H. Ali Abdelwahed S.H. Synthesis and antimicrobial activity of some new benzimidazole derivatives. Molecules 2000 5 12 1429 1438 10.3390/51201429
    [Google Scholar]
  19. Desai K.G. Desai K.R. Antibacterial and antifungal activities of some new 2-azetidinone derivatives. Bioorg. Med. Chem. 2006 14 24 8271 8279 10.1016/j.bmc.2006.09.017 17035035
    [Google Scholar]
  20. Semra Utku Gökçe, M.; Özçelik, B.; Berçin, E. Evaluation of antimicrobial activity of 2-[(2-nitro-1-phenylalkyl)thiomethyl]benzimidazole derivatives. Turk J. Pharm. Sci. 2008 5 2 107 116
    [Google Scholar]
  21. Desai N.C. Shihory N.R. Kotadiya G. Desai P. Facile synthesis of benzimidazole bearing 2-pyridone derivatives as potential antimicrobial agents. Eur. J. Med. Chem. 2014 82C 480 489 10.1016/j.ejmech.2014.06.004 24934572
    [Google Scholar]
  22. Alam S.A.M.F. Ahmad T. Nazmuzzaman M. Rahman S. Ray S.K. Sharifuzzaman M. Karim M.R. Alam M.G. Ajam M.M. Maitra P. Mandol D. Uddin M.E. Ahammed T. Synthesis of benzimidazole derivatives containing Schiff base exhibiting antimicrobial activities. Int. J. Res. Stud. Biosci. 2017 5 7 18 24
    [Google Scholar]
  23. Celik I. Çevik U.A. Karayel A. Işık A. Kayış U. Gül Ü.D. Bostancı H.E. Konca S.F. Özkay Y. Kaplancıklı Z.A. Synthesis, molecular docking, dynamics, quantum-chemical computation, and antimicrobial activity studies of some new benzimidazole–thiadiazole hybrids. ACS Omega 2022 7 50 47015 47030 10.1021/acsomega.2c06142 36570216
    [Google Scholar]
  24. Abdulnabi A.A. Fadhil Ali K. Abd Razik B.M. 3-triazole derivatives of 2-phenyl benzimidazole. Al Mustansiriyah J. Pharm. Sci. 2023 23 2 147 157 10.32947/ajps.v23i2.1016
    [Google Scholar]
  25. Kaplançıklı Z.A. Turan-Zitouni G. Révial G. Güven K. Synthesis and study of antibacterial and antifungal activities of novel 2-[[(benzoxazole/benzimidazole-2-yl)sulfanyl] acetylamino]thiazoles. Arch. Pharm. Res. 2004 27 11 1081 1085 10.1007/BF02975108 15595406
    [Google Scholar]
  26. Khabnadideh S. Rezaei Z. Pakshir K. Zomorodian K. Ghafari N. Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res. Pharm. Sci. 2012 7 2 65 72 23181082
    [Google Scholar]
  27. Bai Y.B. Zhang A.L. Tang J.J. Gao J.M. Synthesis and antifungal activity of 2-chloromethyl-1H-benzimidazole derivatives against phytopathogenic fungi in vitro. J. Agric. Food Chem. 2013 61 11 2789 2795 10.1021/jf3053934 23419161
    [Google Scholar]
  28. Chandrika N.T. Shrestha S.K. Ngo H.X. Garneau-Tsodikova S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg. Med. Chem. 2016 24 16 3680 3686 10.1016/j.bmc.2016.06.010 27301676
    [Google Scholar]
  29. Rao T.N. AlOmar S.Y. Ahmed F. Albalawi F. Ahmad N. Rao N.K. Rao M.V.B. Cheedarala R.K. Reddy G.R. Naidu T.M. Reusable nano-zirconia-catalyzed synthesis of benzimidazoles and their antibacterial and antifungal activities. Molecules 2021 26 14 4219 10.3390/molecules26144219 34299494
    [Google Scholar]
  30. Yang L. Design, synthesis, and antifungal activity of novel benzimidazole derivatives bearing thioether and carbamate moieties. J. Chem. 2022 2022 1 4 10.1155/2022/8646557
    [Google Scholar]
  31. Parthiban P. Saravanakumar A. Mohanraj S. Kavinkumar C. Karthick S. Bharat P. Santhosh M. Abbinanthan M. In vitro studies of antibacterial and antifungal activity of novel substituted benzimidazole derivatives. Trends. Sci. 2023 20 10 6110 6110 10.48048/tis.2023.6110
    [Google Scholar]
  32. Pradeep M. Vishnuvardhan M. Ganesh A. Thalari G. Green synthesis and antimicrobial activity of 3-{1-[(1-Aryl-1H-1,2,3-triazol-4-yl)methyl]-1H-benzimidazol-2-yl}-2-(pyrrolidin-1-yl)quinoline derivatives. Russ. J. Org. Chem. 2024 60 6 1129 1135 10.1134/S1070428024060186
    [Google Scholar]
  33. Navarrete-Vázquez G. Cedillo R. Hernández-Campos A. Yépez L. Hernández-Luis F. Valdez J. Morales R. Cortés R. Hernández M. Castillo R. Synthesis and antiparasitic activity of 2-(Trifluoromethyl)benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2001 11 2 187 190 10.1016/S0960‑894X(00)00619‑3 11206455
    [Google Scholar]
  34. Alamgir M. Black D.S. Kumar N. Synthesis, reactivity and biological activity of benzimidazoles. Bioactive Heterocycles III. Berlin, Heidelberg Springer 2007 87 118 10.1007/7081_2007_088
    [Google Scholar]
  35. Márquez-Navarro A. Nogueda-Torres B. Hernández-Campos A. Soria-Arteche O. Castillo R. Rodríguez-Morales S. Yépez-Mulia L. Hernández-Luis F. Anthelmintic activity of benzimidazole derivatives against Toxocara canis second-stage larvae and Hymenolepis nana adults. Acta Trop. 2009 109 3 232 235 10.1016/j.actatropica.2008.11.014 19073130
    [Google Scholar]
  36. Mavrova A.T. Vuchev D. Anichina K. Vassilev N. Synthesis, antitrichinnellosis and antiprotozoal activity of some novel thieno[2,3-d]pyrimidin-4(3H)-ones containing benzimidazole ring. Eur. J. Med. Chem. 2010 45 12 5856 5861 10.1016/j.ejmech.2010.09.050 20950896
    [Google Scholar]
  37. Munguía B. Mendina P. Espinosa R. Lanz A. Saldaña J.J. Andina M. Ures X. López A. Manta E. Domínguez L. Synthesis and anthelmintic evaluation of novel valerolactam-benzimidazole hybrids. Lett. Drug Des. Discov. 2013 10 10 1007 1014 10.2174/15701808113109990028
    [Google Scholar]
  38. Kenchappa R. Bodke Y.D. Telkar S. Sindhe A.M. Antifungal and anthelmintic activity of novel benzofuran derivatives containing thiazolo benzimidazole nucleus: An in vitro evaluation. J. Chem. Biol. 2017 10 1 11 23 10.1007/s12154‑016‑0160‑x 28101251
    [Google Scholar]
  39. Basavaraja S.M. Ramegowda M.C. Bhadraiah U.K. Basavanna V. Manasa C. Shanthakumar D.C. Ningaiah S. Novel class of benzimidazoles: Synthesis, characterization and pharmaceutical evaluation. Eng. Proc. 2023 59 70 10.3390/engproc2023059070
    [Google Scholar]
  40. Mishra G.P. Tripathy S. Pattanayak P. Novel urea substituted benzimidazole derivatives as anthelmintics: In silico and in vitro approaches. Russ. J. Bioorganic Chem. 2024 50 3 962 973 10.1134/S1068162024030221
    [Google Scholar]
  41. Refaat H.M. Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur. J. Med. Chem. 2010 45 7 2949 2956 10.1016/j.ejmech.2010.03.022 20399544
    [Google Scholar]
  42. Błaszczak-Świątkiewicz K. Olszewska P. Mikiciuk-Olasik E. Biological approach of anticancer activity of new benzimidazole derivatives. Pharmacol. Rep. 2014 66 1 100 106 10.1016/j.pharep.2014.01.001 24905314
    [Google Scholar]
  43. Cheong J.E. Zaffagni M. Chung I. Xu Y. Wang Y. Jernigan F.E. Zetter B.R. Sun L. Synthesis and anticancer activity of novel water soluble benzimidazole carbamates. Eur. J. Med. Chem. 2018 144 372 385 10.1016/j.ejmech.2017.11.037 29288939
    [Google Scholar]
  44. Çevik U.A. Osmaniye D. Çavuşoğlu B.K. Sağlik B.N. Levent S. Ilgin S. Can N.Ö. Özkay Y. Kaplancikli Z.A. Synthesis of novel benzimidazole–oxadiazole derivatives as potent anticancer activity. Med. Chem. Res. 2019 28 12 2252 2261 10.1007/s00044‑019‑02451‑0
    [Google Scholar]
  45. Huynh T.K.C. Nguyen T.H.A. Tran N.H.S. Nguyen T.D. Hoang T.K.D. A facile and efficient synthesis of benzimidazole as potential anticancer agents. J. Chem. Sci. 2020 132 1 84 10.1007/s12039‑020‑01783‑4
    [Google Scholar]
  46. Diaconu D. Antoci V. Mangalagiu V. Amariucai-Mantu D. Mangalagiu I.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep. 2022 12 1 16988 10.1038/s41598‑022‑21435‑6 36216981
    [Google Scholar]
  47. Abbade Y. Kisla M.M. Hassan M.A.K. Celik I. Dogan T.S. Mutlu P. Ates-Alagoz Z. Synthesis, anticancer activity, and in silico modeling of alkylsulfonyl benzimidazole derivatives: Unveiling potent Bcl-2 inhibitors for breast cancer. ACS Omega 2024 9 8 9547 9563 10.1021/acsomega.3c09411 38434899
    [Google Scholar]
  48. Williams S.L. Hartline C.B. Kushner N.L. Harden E.A. Bidanset D.J. Drach J.C. Townsend L.B. Underwood M.R. Biron K.K. Kern E.R. In vitro activities of benzimidazole D- and L-ribonucleosides against herpesviruses. Antimicrob. Agents Chemother. 2003 47 7 2186 2192 10.1128/AAC.47.7.2186‑2192.2003 12821466
    [Google Scholar]
  49. Kotovskaya S.K. Baskakova Z.M. Charushin V.N. Chupakhin O.N. Belanov E.F. Bormotov N.I. Balakhnin S.M. Serova O.A. Synthesis and antiviral activity of fluorinated pyrido[1,2-a]benzimidazoles. Pharm. Chem. J. 2005 39 11 574 578 10.1007/s11094‑006‑0023‑9
    [Google Scholar]
  50. Starčević K. Kralj M. Ester K. Sabol I. Grce M. Pavelić K. Karminski-Zamola G. Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles. Bioorg. Med. Chem. 2007 15 13 4419 4426 10.1016/j.bmc.2007.04.032 17482821
    [Google Scholar]
  51. Sharma D. Narasimhan B. Kumar P. Judge V. Narang R. De Clercq E. Balzarini J. Synthesis, antimicrobial and antiviral activity of substituted benzimidazoles. J. Enzyme Inhib. Med. Chem. 2009 24 5 1161 1168 10.1080/14756360802694427 19772489
    [Google Scholar]
  52. Selvam P. Lakra D.R. Pannecouque C. Synthesis, anti-viral and cytotoxicity studies of some novel N-substituted benzimidazole derivatives. Int. J. Pharm. Sci. Res. 2010 1 9 105 109
    [Google Scholar]
  53. Chen J. Xu L. Wang B. Zhang D. Zhao L. Bei Z. Song Y. Design, synthesis, and biological evaluation of Benzimidazole derivatives as potential Lassa virus inhibitors. Molecules 2023 28 4 1579 10.3390/molecules28041579 36838567
    [Google Scholar]
  54. Ridgway H. Moore G.J. Gadanec L.K. Zulli A. Apostolopoulos V. Hoffmann W. Węgrzyn K. Vassilaki N. Mpekoulis G. Zouridakis M. Giastas P. Vidali V.P. Kelaidonis K. Matsoukas M.T. Dimitriou M. Mavromoustakos T. Tsiodras S. Gorgoulis V.G. Karakasiliotis I. Chasapis C.T. Matsoukas J.M. Novel benzimidazole angiotensin receptor blockers with anti-SARS-CoV-2 activity equipotent to that of nirmatrelvir: Computational and enzymatic studies. Expert Opin. Ther. Targets 2024 28 5 437 459 10.1080/14728222.2024.2362675 38828744
    [Google Scholar]
  55. Thakurdesai P.A. Wadodkar S.G. Chopade C.T. Synthesis and anti-inflammatory activity of some benzimidazole-2-carboxylic acids. Pharmacologyonline 2007 1 314 329
    [Google Scholar]
  56. Sondhi S.M. Rani R. Singh J. Roy P. Agrawal S.K. Saxena A.K. Solvent free synthesis, anti-inflammatory and anticancer activity evaluation of tricyclic and tetracyclic benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2010 20 7 2306 2310 10.1016/j.bmcl.2010.01.147 20188544
    [Google Scholar]
  57. Rajasekaran S. Rao G. Chatterjee A. Synthesis, anti-inflammatory and anti-oxidant activity of some substituted benzimidazole derivatives. Int. J. Drug Dev. Res. 2012 4 3 303 309
    [Google Scholar]
  58. Arora R.K. Kaur N. Bansal Y. Bansal G. Novel coumarin–benzimidazole derivatives as antioxidants and safer anti-inflammatory agents. Acta Pharm. Sin. B 2014 4 5 368 375 10.1016/j.apsb.2014.07.001 26579406
    [Google Scholar]
  59. Kamat V. Yallur B.C. Poojary B. Patil V.B. Nayak S.P. Krishna P.M. Joshi S.D. Synthesis, molecular docking, antibacterial, and anti‐inflammatory activities of benzimidazole‐containing tricyclic systems. J. Chin. Chem. Soc. 2021 68 6 1055 1066 10.1002/jccs.202000454
    [Google Scholar]
  60. Moharana A.K. Dash R.N. Mahanandia N.C. Subudhi B.B. Synthesis and anti-inflammatory activity evaluation of some benzimidazole derivatives. Pharm. Chem. J. 2022 56 8 1070 1074 10.1007/s11094‑022‑02755‑3 36405379
    [Google Scholar]
  61. Bano S. Nadeem H. Zulfiqar I. Shahzadi T. Anwar T. Bukhari A. Masaud S.M. Synthesis and anti-inflammatory activity of benzimidazole derivatives; An in vitro, in vivo and in silico approach. Heliyon 2024 10 9 e30102 10.1016/j.heliyon.2024.e30102 38726192
    [Google Scholar]
  62. Ayhan-Kılcıgil G. Kus C. Özdamar E.D. Can-Eke B. Iscan M. Synthesis and antioxidant capacities of some new benzimidazole derivatives. Arch. Pharm. s 2007 340 11 607 611 10.1002/ardp.200700088 17994646
    [Google Scholar]
  63. Kuş C. Sözüdönmez F. Can-Eke B. Çoban T. Antioxidant and antifungal properties of benzimidazole derivatives. Z. Naturforsch. C J. Biosci. 2010 65 9-10 537 542 10.1515/znc‑2010‑9‑1002 21138053
    [Google Scholar]
  64. Nile S.H. Kumar B. Park S.W. In vitro evaluation of selected benzimidazole derivatives as an antioxidant and xanthine oxidase inhibitors. Chem. Biol. Drug Des. 2013 82 3 290 295 10.1111/cbdd.12141 23581708
    [Google Scholar]
  65. Mavrova A.T. Yancheva D. Anastassova N. Anichina K. Zvezdanovic J. Djordjevic A. Markovic D. Smelcerovic A. Synthesis, electronic properties, antioxidant and antibacterial activity of some new benzimidazoles. Bioorg. Med. Chem. 2015 23 19 6317 6326 10.1016/j.bmc.2015.08.029 26344590
    [Google Scholar]
  66. Karmaker N. Lira D.N. Das B.K. Kumar U. Rouf A.S.S. Synthesis and antioxidant activity of some novel benzimidazole derivatives. Dhaka Univers. J. Pharm. Sci. 2018 16 2 245 249 10.3329/dujps.v16i2.35263
    [Google Scholar]
  67. Obaid R.J. New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation. Arab. J. Chem. 2023 16 2 104505 10.1016/j.arabjc.2022.104505
    [Google Scholar]
  68. Kulesza U. Skonieczna M. Kosmalski T. Benzimidazole derivatives as potential antioxidants: Evaluation in HCT116 cells under tert-butyl hydroperoxide-induced oxidative stress and in chemical assays (DPPH, FRAP, ABTS). Int. J. Mol. Sci. 2024 25 2 835 10.3390/ijms25020835 38255909
    [Google Scholar]
  69. Nakano H. Inoue T. Kawasaki N. Miyataka H. Matsumoto H. Taguchi T. Inagaki N. Nagai H. Satoh T. Synthesis and biological activities of novel antiallergic agents with 5-lipoxygenase inhibiting action. Bioorg. Med. Chem. 2000 8 2 373 380 10.1016/S0968‑0896(99)00291‑6 10722160
    [Google Scholar]
  70. Wang X.J. Xi M.Y. Fu J.H. Zhang F.R. Cheng G.F. Yin D.L. You Q.D. Synthesis, biological evaluation and SAR studies of benzimidazole derivatives as H1-antihistamine agents. Chin. Chem. Lett. 2012 23 6 707 710 10.1016/j.cclet.2012.04.020
    [Google Scholar]
  71. Du Z-T. Lu D. Wu J. Huang L-Z. Ma B.L. Zhang T. Microwave-assisted synthesis of 2-substituted 1h-benzo [d] imidazoles and their antifungal activities in vitro. Heterocycles 2013 87 7 1545 1552 10.3987/COM‑13‑12734
    [Google Scholar]
  72. Datar P. Limaye S. Design and synthesis of Mannich bases as benzimidazole derivatives as analgesic agents. Antiinflamm. Antiallergy Agents Med. Chem. 2015 14 1 35 46 10.2174/1871523014666150312164625
    [Google Scholar]
  73. Patel M.O. Shirsat M. Synthesis, characterization and evaluation of antioxidant activity of novel combine heterocyclic. Mukt Shabd J. 2020 IX V 307 316
    [Google Scholar]
  74. Inada Y. Kubo K. Pharmaceutical composition for angiotensin II-mediated diseases. US Patent 6348481B2 2002
    [Google Scholar]
  75. Das B. Holla H. Srinivas Y. Efficient (bromodimethyl)sulfonium bromide mediated synthesis of benzimidazoles. Tetrahedron Lett. 2007 48 1 61 64 10.1016/j.tetlet.2006.11.018
    [Google Scholar]
  76. Patil V.D. Patil J. Rege P. Dere G. Mild and efficient synthesis of benzimidazole using lead peroxide under solvent-free conditions. Synth. Commun. 2010 41 1 58 62 10.1080/00397910903531789
    [Google Scholar]
  77. Zhu W. Da Y. Wu D. Zheng H. Zhu L. Wang L. Yan Y. Chen Z. Design, synthesis and biological evaluation of new 5-nitro benzimidazole derivatives as AT1 antagonists with anti-hypertension activities. Bioorg. Med. Chem. 2014 22 7 2294 2302 10.1016/j.bmc.2014.02.008 24613628
    [Google Scholar]
  78. Zhang Y. Xu J. Li Y. Yao H. Wu X. Design, synthesis and pharmacological evaluation of novel NO-releasing benzimidazole hybrids as potential antihypertensive candidate. Chem. Biol. Drug Des. 2015 85 5 541 548 10.1111/cbdd.12442 25283264
    [Google Scholar]
  79. Wu Z. Bao X.L. Zhu W.B. Wang Y.H. Phuong Anh N.T. Wu X.F. Yan Y.J. Chen Z.L. Design, synthesis, and biological evaluation of 6-benzoxazole benzimidazole derivatives with antihypertension activities. ACS Med. Chem. Lett. 2019 10 1 40 43 10.1021/acsmedchemlett.8b00335 30655944
    [Google Scholar]
  80. Wu Z. Xia M.B. Bertsetseg D. Wang Y.H. Bao X.L. Zhu W.B. Tao-Xu; Chen, P.R.; Tang, H.S.; Yan, Y.J.; Chen, Z.L. Design, synthesis and biological evaluation of novel fluoro-substituted benzimidazole derivatives with anti-hypertension activities. Bioorg. Chem. 2020 101 104042 10.1016/j.bioorg.2020.104042 32650179
    [Google Scholar]
  81. Sethy S. Mandal S. Ewies E. Dhiman N. Garg A. Synthesis, characterization and biological evaluation of benzimidazole and benzindazole derivatives as anti-hypertensive agents. Egypt. J. Chem. 2021 64 7 3659 3664 10.21608/ejchem.2021.79840.3931
    [Google Scholar]
  82. El-Shorbagi A. Hayallah A. Omar N. Ahmed A. Design and synthesis of some thiazolo[3,2-a]benzimidazole quaternary salts of potential antidiabetic. Bull. Pharm. Sci. 2001 24 1 7 20 10.21608/bfsa.2001.65750
    [Google Scholar]
  83. Shingalapur R.V. Hosamani K.M. Keri R.S. Hugar M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem. 2010 45 5 1753 1759 10.1016/j.ejmech.2010.01.007 20122763
    [Google Scholar]
  84. Shaikh I.N. Hosamani K.M. Seetharamareddy H.R. Hugar M.H. Synthesis and in-vivo evaluation of carbonyl-amide linkage based new benzimidazole derivatives. Arch. Pharm. 2012 345 1 65 72 10.1002/ardp.201100068 21953492
    [Google Scholar]
  85. Babkov D.A. Zhukowskaya O.N. Borisov A.V. Babkova V.A. Sokolova E.V. Brigadirova A.A. Litvinov R.A. Kolodina A.A. Morkovnik A.S. Sochnev V.S. Borodkin G.S. Spasov A.A. Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators. Bioorg. Med. Chem. Lett. 2019 29 17 2443 2447 10.1016/j.bmcl.2019.07.035 31358465
    [Google Scholar]
  86. Deswal L. Verma V. Kumar D. Kaushik C.P. Kumar A. Deswal Y. Punia S. Synthesis and antidiabetic evaluation of benzimidazole‐tethered 1,2,3‐triazoles. Arch. Pharm. 2020 353 9 2000090 10.1002/ardp.202000090 32567729
    [Google Scholar]
  87. Wang X. Du J. Zhou T. Fang X. Yang H. Novel benzotriazole-benzimidazole metal complexes: structure-activity relationship, synthesis, characterization, and antidiabetic activity. J. Mol. Struct. 2023 1292 136141 10.1016/j.molstruc.2023.136141
    [Google Scholar]
  88. Rai P.V. Ramu R. Akhileshwari P. Prabhu S. Prabhune N.M. Deepthi P.V. Anjana P.T. Ganavi D. Vijesh A.M. Goh K.W. Ahmed M.Z. Kumar V. Novel benzimidazole-endowed chalcones as α-glucosidase and α-amylase inhibitors: An insight into structural and computational studies. Molecules 2024 29 23 5599 10.3390/molecules29235599 39683757
    [Google Scholar]
  89. Tanaka J. Iida H. Abe M. Yuda Y. Inoue S. Okabe S. Gastric antisecretory and anti-ulcer effect of ME3407, a new benzimidazole derivative, in rats. Arzneimittelforschung 2004 54 4 221 229 15146935
    [Google Scholar]
  90. Patil A. Ganguly S. Surana S. Synthesis and antiulcer activity of 2-[5-substituted-1-H-benzo(d) imidazol-2-yl sulfinyl]methyl-3-substituted quinazoline-4-(3H) ones. J. Chem. Sci. 2010 122 3 443 450 10.1007/s12039‑010‑0052‑5
    [Google Scholar]
  91. Patil A. Ganguly S. Hundiwale J. Tayade S. Synthesis and study of some novel benzimidazole analogs as potential antiulcer agents. Int. J. Pharm. Chem. 2012 2 89 92
    [Google Scholar]
  92. Dudhe P.B. Jain K.S. Raskar V.K. Deodhe A.S. Patel J.G. Phoujdar M.S. Kathiravan M.K. Synthesis and biological evaluation of novel condensed pyrimidinylmethylsulfinylbenzimidazoles as antiulcer agent. Med. Chem. Res. 2013 22 8 3719 3727 10.1007/s00044‑012‑0358‑6
    [Google Scholar]
  93. Chernikov M.V. Oganova M.A. Gerasimenko A.S. Artemyev E.A. Antiulcer activity of dinitrate 2-phenyl-9diethylaminoethylamine [1, 2-a] benzimidazole with helicobacter pylori-like damage of gastric mucosa. Pharm. Pharmacol. 2018 6 4 367 379 10.19163/2307‑9266‑2018‑6‑4‑367‑379
    [Google Scholar]
  94. Farooqui M. Khan R.F. Synthesis and pharmacological evaluation of novel benzimidazole derivatives as antiulcer and H+ K+ ATPase inhibitor. J. Adv. Med. Pharm. Sci. 2021 23 5 28 39
    [Google Scholar]
  95. Awais M. Zubair H.M. Nadeem H. Hill J.W. Ali J. Saleem A. Asghar R. Khan S. Maqbool T. Akhtar M.F. Naveed M. Benzimidazole derivative (N-{4-[2-(4-methoxyphenyl)-1H-benzimidazole-1-sulfonyl] phenyl} acetamide) ameliorates methotrexate-induced intestinal mucositis by suppressing oxidative stress and inflammatory markers in mice. Inflammation 2024 47 4 1185 1203 10.1007/s10753‑024‑01969‑9 38289578
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372412200250929105104
Loading
/content/journals/cocat/10.2174/0122133372412200250929105104
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test