Skip to content
2000
image of An Expedient Green Synthesis of 7-Arylbenzo[c]acridine-5,6(7H,12H)-di-one Derivatives Mediated by Achiral Nicotinic Acid

Abstract

Introduction

Natural products containing nitrogen in heterocycles are the central attraction of various drug candidates. Furthermore, the presence of an acridine and 1,4-naphthoquinone moiety in these congeners considerably enhanced their biological activities. Therefore, there is an urgent need to develop an efficient method for 7-arylbenzo[c]acridine-5,6(7H,12H)-dione synthesis.

Methods

To synthesize 7-arylbenzo[c]acridine-5,6(7H,12H)-dione, 2-hydroxy-1,4-naphthoquinone, aromatic aldehydes, and aromatic amines were mixed in a single reaction vessel at room temperature without special precautions. To this mixture, nicotinic acid was employed as a catalyst in ethanol as the solvent.

Results

24 different 7-arylbenzo[c]acridine-5,6(7H,12H)-dione derivatives have been synthesized successfully with good yields.

Discussion

This metal-free annulation strategy provides several significant advantages, including simplicity of reaction operation, shorter reaction time, use of affordable starting materials, and simple product purification techniques. These nonaromatic acridine derivatives can be conveniently transformed into their aromatic derivatives, which represents a novel finding of this approach.

Conclusion

A one-pot annulation approach to assemble 7-arylbenzo[c]acridine-5,6(7H,12H)-dione derivatives has been developed via cascade condensation of 2-hydroxy-1,4-naphthoquinone, aromatic aldehydes, and aromatic amines, with the first-time use of nicotinic acid as a catalyst. The potential reusability of nicotinic acid further enhances the method's attractiveness compared to existing approaches.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372411308251109054123
2026-01-16
2026-01-31
Loading full text...

Full text loading...

References

  1. Marshall C.M. Federice J.G. Bell C.N. Cox P.B. Njardarson J.T. An update on the nitrogen heterocycle compositions and properties of U.S. FDA-approved pharmaceuticals (2013–2023). J. Med. Chem. 2024 67 14 11622 11655 10.1021/acs.jmedchem.4c01122 38995264
    [Google Scholar]
  2. Heravi M.M. Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Advances 2020 10 72 44247 44311 10.1039/D0RA09198G 35557843
    [Google Scholar]
  3. Kerru N. Gummidi L. Maddila S. Gangu K.K. Jonnalagadda S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020 25 8 1909 10.3390/molecules25081909 32326131
    [Google Scholar]
  4. Joule J.A. Natural products containing nitrogen heterocycles—some highlights 1990–2015. Advances in Heterocyclic Chemistry; Else-vier, 2016 119 81 106 10.1016/bs.aihch.2015.10.005
    [Google Scholar]
  5. Walsh C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett. 2015 56 23 3075 3081 10.1016/j.tetlet.2014.11.046
    [Google Scholar]
  6. Hosseininasab F.S. Memarian H.R. Efficient synthesis of decahydroacridine-1,8-diones and polyhydroquinolines using the step-wise method. Res. Chem. Intermed. 2022 48 4 1515 1540 10.1007/s11164‑021‑04643‑z
    [Google Scholar]
  7. Kinens A. Kalnins T. Suna E. Synthesis of 9-phenylacridines via ortho-lithiation–cyclization sequence. Chem. Heterocycl. Compd. 2015 50 10 1501 1505 10.1007/s10593‑014‑1616‑y
    [Google Scholar]
  8. Favi G. Modern strategies for heterocycle synthesis. Molecules 2020 25 11 2476 10.3390/molecules25112476 32471057
    [Google Scholar]
  9. John S.E. Gulati S. Shankaraiah N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front. 2021 8 15 4237 4287 10.1039/D0QO01480J
    [Google Scholar]
  10. Wu Y. Cheng H. Li J. Liu J. Sun J. Microdroplet chemistry accelerating a three-component passerini reaction for α-acyloxy carboxamide synthesis. J. Org. Chem. 2023 88 15 11186 11196 10.1021/acs.joc.3c01206 37493511
    [Google Scholar]
  11. Jiang B. Rajale T. Wever W. Tu S.J. Li G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J. 2010 5 11 2318 2335 10.1002/asia.201000310 20922748
    [Google Scholar]
  12. Ghosh T. Ahamed S.S. Paul R. Saha P. Employing multicomponent reactions in heterocycle synthesis: Recent advances. Eur. J. Org. Chem. 2025 2500337 10.1002/ejoc.202500337
    [Google Scholar]
  13. Neto B.A.D. Rocha R.O. Rodrigues M.O. Catalytic approaches to multicomponent reactions: A critical review and perspectives on the roles of catalysis. Molecusles 2021 27 1 132 10.3390/molecules27010132 35011363
    [Google Scholar]
  14. Younus H.A. Al-Rashida M. Hameed A. Uroos M. Salar U. Rana S. Khan K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat. 2021 31 3 267 289 10.1080/13543776.2021.1858797 33275061
    [Google Scholar]
  15. Ali H.M. El-Ossaily Y.A. Metwally S.A. Althobaiti I.O. Altaleb H.A. Naffea Y.A. Tolba M.S. Catalytic and multicomponent reactions for green synthesis of some pyrazolone compounds and evaluation as antimicrobial agents. ACS Omega 2022 7 33 29142 29152 10.1021/acsomega.2c03070 36033712
    [Google Scholar]
  16. Yazdani H. Hooshmand S.E. Stenzel M.H. Fusion of cellulose and multicomponent reactions. Benign by Design. 2022 10 14 4359 4373 10.1021/acssuschemeng.2c00110
    [Google Scholar]
  17. Cioc R.C. Ruijter E. Orru R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014 16 6 2958 2975 10.1039/C4GC00013G
    [Google Scholar]
  18. Messire G. Caillet E. Berteina-Raboin S. Green catalysts and/or green solvents for sustainable multi-component reactions. Catalysts 2024 14 9 593 10.3390/catal14090593
    [Google Scholar]
  19. Verma R.P. Anti-cancer activities of 1,4-naphthoquinones: A QSAR study. Anticancer. Agents Med. Chem. 2006 6 5 489 499 10.2174/187152006778226512 17017857
    [Google Scholar]
  20. Kumagai Y. Shinkai Y. Miura T. Cho A.K. The chemical biology of naphthoquinones and its environmental implications. Annu. Rev. Pharmacol. Toxicol. 2012 52 1 221 247 10.1146/annurev‑pharmtox‑010611‑134517 21942631
    [Google Scholar]
  21. Pinto V.A. Lisboa de Castro S. The trypanocidal activity of naphthoquinones: A review. Molecules 2009 14 11 4570 4590 10.3390/molecules14114570 19924086
    [Google Scholar]
  22. Babula P. Adam V. Havel L. Kizek R. Noteworthy secondary metabolites naphthoquinones – their occurrence, pharmacological properties and analysis. Curr. Pharm. Anal. 2009 5 1 47 68 10.2174/157341209787314936
    [Google Scholar]
  23. Chang H.X. Chou T.C. Savaraj N. Liu L.F. Yu C. Cheng C.C. Design of antineoplastic agents based on the “2-phenylnaphthalene-type” structural pattern. 4. Synthesis and biological activity of 2-chloro-3-(substituted phenoxy)-1, 4-naphthoquinones and related 5,8-dihydroxy-1,4-naphthoquinones. J. Med. Chem. 1999 42 3 405 408 10.1021/jm9804679 9986711
    [Google Scholar]
  24. Macías-Rubalcava M.L. Hernández-Bautista B.E. Jiménez-Estrada M. González M.C. Glenn A.E. Hanlin R.T. Hernández-Ortega S. Saucedo-García A. Muria-González J.M. Anaya A.L. Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry 2008 69 5 1185 1196 10.1016/j.phytochem.2007.12.006 18234248
    [Google Scholar]
  25. Braud E. Goddard M.L. Kolb S. Brun M.P. Mondésert O. Quaranta M. Gresh N. Ducommun B. Garbay C. Novel naphthoquinone and quinolinedione inhibitors of CDC25 phosphatase activity with antiproliferative properties. Bioorg. Med. Chem. 2008 16 19 9040 9049 10.1016/j.bmc.2008.08.009 18789703
    [Google Scholar]
  26. Sperry J. Bachu P. Brimble M.A. Pyranonaphthoquinones—isolation, biological activity and synthesis. Nat. Prod. Rep. 2008 25 2 376 400 10.1039/B708811F 18389142
    [Google Scholar]
  27. Behbahani F.S. Tabeshpour J. Mirzaei S. Golmakaniyoon S. Tayarani-Najaran Z. Ghasemi A. Ghodsi R. Synthesis and biological evaluation of novel benzo[ c]acridine‐diones as potential anticancer agents and tubulin polymerization inhibitors. Arch. Pharm. 2019 352 6 1800307 10.1002/ardp.201800307 31012156
    [Google Scholar]
  28. Rahman M.M. Islam M.R. Akash S. Shohag S. Ahmed L. Supti F.A. Rauf A. Aljohani A.S.M. Al Abdulmonem W. Khalil A.A. Sharma R. Thiruvengadam M. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Chem. Biol. Interact. 2022 368 110198 10.1016/j.cbi.2022.110198 36179774
    [Google Scholar]
  29. Wellington K.W. Understanding cancer and the anticancer activities of naphthoquinones – A review. RSC Advances 2015 5 26 20309 20338 10.1039/C4RA13547D
    [Google Scholar]
  30. da Silva Júnior E.N. de Deus C.F. Cavalcanti B.C. Pessoa C. Costa-Lotufo L.V. Montenegro R.C. de Moraes M.O. Pinto M.C.F.R. de Simone C.A. Ferreira V.F. Goulart M.O.F. Andrade C.K.Z. Pinto A.V. 3-arylamino and 3-alkoxy-nor-β-lapachone derivatives: synthesis and cytotoxicity against cancer cell lines. J. Med. Chem. 2010 53 1 504 508 10.1021/jm900865m 19947600
    [Google Scholar]
  31. de Castro S.L. Emery F.S. da Silva Júnior E.N. Synthesis of quinoidal molecules: Strategies towards bioactive compounds with an emphasis on lapachones. Eur. J. Med. Chem. 2013 69 678 700 10.1016/j.ejmech.2013.07.057 24095760
    [Google Scholar]
  32. Trachootham D. Alexandre J. Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009 8 7 579 591 10.1038/nrd2803 19478820
    [Google Scholar]
  33. Vieira A.A. Brandão I.R. Valença W.O. de Simone C.A. Cavalcanti B.C. Pessoa C. Carneiro T.R. Braga A.L. da Silva E.N. Hybrid compounds with two redox centres: Modular synthesis of chalcogen-containing lapachones and studies on their antitumor activity. Eur. J. Med. Chem. 2015 101 254 265 10.1016/j.ejmech.2015.06.044 26142490
    [Google Scholar]
  34. Epifano F. Genovese S. Fiorito S. Mathieu V. Kiss R. Lapachol and its congeners as anticancer agents: A review. Phytochem. Rev. 2014 13 1 37 49 10.1007/s11101‑013‑9289‑1
    [Google Scholar]
  35. Gomes C.L. de Albuquerque Wanderley Sales V. Gomes de Melo C. Ferreira da Silva R.M. Nishimura V. R.H.; Rolim, L.A.; Rolim Neto, P.J. Beta-lapachone: Natural occurrence, physicochemical properties, biological activities, toxicity and synthesis. Phytochemistry 2021 186 112713 10.1016/j.phytochem.2021.112713 33667813
    [Google Scholar]
  36. Gong Q. Hu J. Wang P. Li X. Zhang X. A comprehensive review on β-lapachone: Mechanisms, structural modifications, and therapeutic potentials. Eur. J. Med. Chem. 2021 210 112962 10.1016/j.ejmech.2020.112962 33158575
    [Google Scholar]
  37. Mahajan S. Khan S.I. Tekwani B.L. Khan I.A. Singh I.P. Design, synthesis and biological evaluation of 7-arylbenzo[c]acridine-5,6- diones as potential anti-leishmanial and anti-trypanosomal agents. Med. Chem. 2018 14 6 563 572 10.2174/1573406414666180226163222 29485004
    [Google Scholar]
  38. Zorzanelli B.C. Ouverney G. Pauli F.P. da Fonseca A.C.C. de Almeida E.C.P. de Carvalho D.G. Possik P.A. Rabelo V.W.H. Abreu P.A. Pontes B. Ferreira V.F. Forezi L.S.M. da Silva F.C. Robbs B.K. Pro-apoptotic antitumoral effect of novel acridine-core naphthoquinone compounds against oral squamous cell carcinoma. Molecules 2022 27 16 5148 10.3390/molecules27165148 36014389
    [Google Scholar]
  39. Daraie M. Mirzaei M. Bazargan M. Amiri V.S. Sanati B.A. Heravi M.M. Lanthanoid-containing polyoxometalate nanocatalysts in the synthesis of bioactive isatin-based compounds. Sci. Rep. 2022 12 1 12004 10.1038/s41598‑022‑16384‑z 35835941
    [Google Scholar]
  40. Nguyen P.N. Nguyen G.L.N. Duong T.A.T. Le M.P.T. Nguyen L.P. Kim J. Tran P.H. Truong H.H.T. Nguyen H.T. High-yield, fast, and green synthesis of acridine derivatives using a Co/C catalyst from rice husks with a microwave-assisted method. React. Chem. Eng. 2024 9 8 2034 2049 10.1039/D4RE00065J
    [Google Scholar]
  41. Dandia A. Sharma A. Parewa V. Kumawat B. Rathore K.S. Sharma A. Amidic C–N bond cleavage of isatin: chemoselective synthesis of pyrrolo[2,3,4- kl]acridin-1-ones using Ag NPs decorated rGO composite as an efficient and recoverable catalyst under microwave irradiation. RSC Advances 2015 5 111 91888 91902 10.1039/C5RA11747J
    [Google Scholar]
  42. Ghasemzadeh M.A. Mirhosseini-Eshkevari B. Fe3O4 @silica sulfonic acid nanocomposite as a magnetically separable catalyst for the synthesis of 2-arylpyrrolo[2,3,4-kl]acridin-1(2h)-ones. J. Chem. Res. 2015 39 7 380 386 10.3184/174751915X14355930432579
    [Google Scholar]
  43. Cao C. Xu C. Lin W. Li X. Hu M. Wang J. Huang Z. Shi D. Wang Y. Microwave-assisted improved synthesis of pyrrolo[2,3,4-kl]acridine and dihydropyrrolo[2,3,4-kl]acridine derivatives catalyzed by silica sulfuric acid. Molecules 2013 18 2 1613 1625 10.3390/molecules18021613 23358320
    [Google Scholar]
  44. Kefayati H. Narchin F. Rad-Moghadam K. An unexpected multicomponent reaction leading to 2-arylpyrrolo[2,3,4-kl]acridin-1(2H)-ones. Tetrahedron Lett. 2012 53 34 4573 4575 10.1016/j.tetlet.2012.06.070
    [Google Scholar]
  45. Faisal M. Shahid S. Ghumro S.A. Saeed A. Larik F.A. Shaheen Z. Channar P.A. Fattah T.A. Rasheed S. Mahesar P.A. DABCO–PEG ionic liquid-based synthesis of acridine analogous and its inhibitory activity on alkaline phosphatase. Synth. Commun. 2018 48 4 462 472 10.1080/00397911.2017.1409898
    [Google Scholar]
  46. Wang H. Li L. Lin W. Xu P. Huang Z. Shi D. An efficient synthesis of pyrrolo[2,3,4-kl]acridin-1-one derivatives catalyzed by L-proline. Org. Lett. 2012 14 17 4598 4601 10.1021/ol302058g 22920713
    [Google Scholar]
  47. Bhattacharjee S. Basak P. Ghosh P. Greener synthesis of pyrroloacridine-1(2h)-one and 1,8-dioxodecahydroacridine derivatives: ascorbic acid mediated organocatalyticapproach. Tetrahedron Lett. 2025 159 155518 10.1016/j.tetlet.2025.155518
    [Google Scholar]
  48. Fatahpour M. Hazeri N. Maghsoodlou M.T. Lashkari M. A green approach for the one‐pot, three‐component synthesis of 2‐arylpyrroloacridin‐1(2 h)‐ones using lactic acid as a bio‐based catalyst under solvent‐free conditions. J. Chin. Chem. Soc. 2017 64 9 1071 1078 10.1002/jccs.201700128
    [Google Scholar]
  49. Sarkar P. Sarkar S. Ghosh P. A heteroditopic macrocycle as organocatalytic nanoreactor for pyrroloacridinone synthesis in water. Beilstein J. Org. Chem. 2019 15 1505 1514 10.3762/bjoc.15.152 31354868
    [Google Scholar]
  50. Al Munsur A.Z. Roy H.N. Imon M.K. Highly efficient and metal-free synthesis of tri- and tetrasubstituted imidazole catalyzed by 3-picolinic acid. Arab. J. Chem. 2020 13 12 8807 8814 10.1016/j.arabjc.2020.10.010
    [Google Scholar]
  51. Ahmed K. Karmaker P.G. Roy H.N. L-proline catalyzed one-pot synthesis of benzoxanthenes in aqueous medium. Synth. Commun. 2024 54 20 1736 1747 10.1080/00397911.2024.2403141
    [Google Scholar]
  52. Islam I. Kanti Roy P. Zangrando E. Gopal Karmaker P. Nath Roy H. 4,4-Dimethyl-2-phenyl-4,5-di-hydro-pyrrolo-[2,3,4-kl]acridin-1(2H)-one. IUCrdata 2025 10 Pt 4 x250361 10.1107/S241431462500361X 40337315
    [Google Scholar]
  53. Roy H.N. Rana M. Munsur A.Z.A. Lee K.I. Sarker A.K. Efficient and convenient synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives mediated by L-proline. Synth. Commun. 2016 46 16 1370 1376 10.1080/00397911.2016.1192650
    [Google Scholar]
  54. Imon M.K. Islam R. Karmaker P.G. Roy P.K. Lee K.I. Roy H.N. A concise metal-free synthesis of xanthene derivatives mediated by achiral 2-aminophenol under solvent-free conditions. Synth. Commun. 2022 52 5 712 723 10.1080/00397911.2022.2047730
    [Google Scholar]
  55. Benaglia M. Recoverable and recyclable chiral organic catalysts. New J. Chem. 2006 30 11 1525 10.1039/b610416a
    [Google Scholar]
  56. Fulgheri T. Della Penna F. Baschieri A. Carlone A. Advancements in the recycling of organocatalysts: From classical to alternative approaches. Curr. Opin. Green Sustain. Chem. 2020 25 100387 10.1016/j.cogsc.2020.100387
    [Google Scholar]
  57. Kitanosono T. Masuda K. Xu P. Kobayashi S. Catalytic organic reactions in water toward sustainable society. Chem. Rev. 2018 118 2 679 746 10.1021/acs.chemrev.7b00417 29218984
    [Google Scholar]
  58. Mahajan S. Khullar S. Mandal S.K. Singh I.P. A one-pot, three-component reaction for the synthesis of novel 7-arylbenzo[c]acridine-5,6-diones. Chem. Commun. 2014 50 70 10078 10081 10.1039/C4CC03079F 25046767
    [Google Scholar]
  59. Devi M. Kumar P. Singh R. Narayan L. Kumar A. Sindhu J. Lal S. Hussain K. Singh D. A comprehensive review on synthesis, biological profile and photophysical studies of heterocyclic compounds derived from 2,3-diamino-1,4-naphthoquinone. J. Mol. Struct. 2022 1269 133786 10.1016/j.molstruc.2022.133786
    [Google Scholar]
  60. Kumari P.S. Anthony P.S. Ganesan S.S. One-pot synthesis of indole-fused nitrogen heterocycles via the direct C(sp 2)–H functionalization of naphthoquinones; accessibility for deep red emitting materials. New J. Chem. 2022 46 35 16874 16879 10.1039/D2NJ02024F
    [Google Scholar]
  61. Ravichandiran P. Vasanthkumar S. Synthesis of heterocyclic naphthoquinone derivatives as potent organic fluorescent switching molecules. J. Taibah Univ. Sci. 2015 9 4 538 547 10.1016/j.jtusci.2014.12.003
    [Google Scholar]
  62. Keihanfar M. Mirjalili B.B.F. Catalyst-free synthesis of tetrahydrodipyrazolopyridines via an one-pot tandem and green pseudo-six-component reaction in water. BMC Chem. 2022 16 1 9 10.1186/s13065‑022‑00802‑4 35246233
    [Google Scholar]
  63. Tian Y. Liu Q. Liu Y. Zhao R. Li G. Xu F. Catalyst-free Mannich-type reactions in water: Expedient synthesis of naphthol-substituted isoindolinones. Tetrahedron Lett. 2018 59 15 1454 1457 10.1016/j.tetlet.2018.02.083
    [Google Scholar]
  64. K, P.; Banda, B.P.; Atmakur, K. A catalyst and solvent free synthesis of polysubstituted 2-methylene-1,2-dihydropyridines. Synth. Commun. 2025 55 9 683 691 10.1080/00397911.2025.2495139
    [Google Scholar]
  65. Daloee T.S. Behbahani F.K. Marandi G.B. L-proline as a recyclable organocatalyst for the preparation of hydroxy‐substituted naphthalene‐1,4‐diones. Russ. J. Org. Chem. 2022 58 9 1336 1340 10.1134/S1070428022090202
    [Google Scholar]
  66. Winterton N. The green solvent: A critical perspective. Clean Technol. Environ. Policy 2021 23 9 2499 2522 10.1007/s10098‑021‑02188‑8 34608382
    [Google Scholar]
  67. Byrne F.P. Jin S. Paggiola G. Petchey T.H.M. Clark J.H. Farmer T.J. Hunt A.J. Robert McElroy C. Sherwood J. Tools and techniques for solvent selection: Green solvent selection guides. Sustainable Chemical Processes 2016 4 1 7 10.1186/s40508‑016‑0051‑z
    [Google Scholar]
  68. Meek M.E. Beauchamp R. Long G. Moir D. Turner L. Walker M. Chloroform: exposure estimation, hazard characterization, and exposure-response analysis. J. Toxicol. Environ. Health B Crit. Rev. 2002 5 3 283 334 10.1080/10937400290070080 12162870
    [Google Scholar]
  69. Gujjarappa R. Vodnala N. Reddy V.G. Malakar C.C. Niacin as a potent organocatalyst towards the synthesis of quinazolines using nitriles as C–N source. Eur. J. Org. Chem. 2020 2020 7 803 814 10.1002/ejoc.201901651
    [Google Scholar]
  70. Davarpanah J. Ghahremani M. Najafi O. Synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via Hantzsch reaction using nicotinic acid as a green and reusable catalyst. J. Mol. Struct. 2019 1177 525 535 10.1016/j.molstruc.2018.10.002
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372411308251109054123
Loading
/content/journals/cocat/10.2174/0122133372411308251109054123
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test