Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Background

Oxidation with peroxides plays an important role in dopamine catabolism, the disruption of which is responsible for the development of neurodegenerative diseases, including Parkinson's disease. However, the mechanism of dopamine oxidation with peroxides has not been studied in detail, indicating the need to develop the kinetic patterns of the model reaction between dopamine hydrochloride and potassium peroxodisulfate.

Objective

This article aims to establish the kinetic patterns of dopamine hydrochloride oxidation in the presence of potassium peroxodisulfate using the conductometry method to monitor the reaction rate.

Methods

Conversion monitoring of dopamine hydrochloride and potassium peroxodisulfate was conducted by conductometry, which demonstrated high efficiency and was in good agreement with results independently obtained by potentiometry and UV spectroscopy.

Results

The use of conductometry to monitor the current concentration of dopamine during its oxidation in the presence of peroxodisulfate anion is described for the first time. It was found that the activation energy of dopamine hydrochloride oxidation by potassium peroxodisulfate is approximately 60 kJ mol-1, and the reaction proceeds through a highly ordered transition state with an activation entropy of –127 J mol-1 K-1, under the first-order kinetic law.

Conclusion

It is shown that dopamine acts as an activator of peroxide breakdown and can potentially serve as a source of radicals for the development of oxidative stress, which is one of the causes of neurodegenerative diseases, such as Parkinson's disease. To explain the first order of the reaction and the small value of the pre-exponential factor, an assumption was made about the intermediate formation of charge-transfer complexes between dopamine and the peroxodisulfate anion, as well as about the pronounced hydration of the transition state formed when these reagents approach each other.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372398080250811071652
2025-08-27
2026-01-02
Loading full text...

Full text loading...

References

  1. SperanzaL. di PorzioU. ViggianoD. de DonatoA. VolpicelliF. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control.Cells202110473510.3390/cells10040735 33810328
    [Google Scholar]
  2. NagatsT. Genes for human catecholamine-synthesizing enzymes.Neurosci. Res.199112231534510.1016/0168‑0102(91)90001‑F 1684650
    [Google Scholar]
  3. CosentinoM. MarinoF. MaestroniG.J.M. Sympathoadrenergic modulation of hematopoiesis: A review of available evidence and of therapeutic perspectives.Front. Cell. Neurosci.2015930210.3389/fncel.2015.00302 26300737
    [Google Scholar]
  4. SniderS.R. CarlssonA. The adrenal dopamine as an indicator of adrenomedullary hormone biosynthesis.Naunyn Schmiedebergs Arch. Pharmacol.1972275434735710.1007/BF00501124 4144189
    [Google Scholar]
  5. PernetA. HammondV.A. Blesa-MalpicaG. BurrinJ. OrskovH. AlbertiK.G. JohnstonD.G. The metabolic effects of dopamine in man.Eur. J. Clin. Pharmacol.1984261232810.1007/BF00546703 6143668
    [Google Scholar]
  6. MeiserJ. WeindlD. HillerK. Complexity of dopamine metabolism.Cell Commun. Signal.20131113410.1186/1478‑811X‑11‑34 23683503
    [Google Scholar]
  7. ElsworthJ.D. RothR.H. Dopamine synthesis, uptake, metabolism, and receptors: Relevance to gene therapy of Parkinson’s disease.Exp. Neurol.199714414910.1006/exnr.1996.6379 9126143
    [Google Scholar]
  8. RubíB. MaechlerP. Minireview: New roles for peripheral dopamine on metabolic control and tumor growth: Let’s seek the balance.Endocrinology2010151125570558110.1210/en.2010‑0745 21047943
    [Google Scholar]
  9. BromekE. HaduchA. GołembiowskaK. DanielW.A. Cytochrome P450 mediates dopamine formation in the brain in vivo.J. Neurochem.2011118580681510.1111/j.1471‑4159.2011.07339.x 21651557
    [Google Scholar]
  10. MännistöP.T. UlmanenI. LundströmK. TaskinenJ. TenhunenJ. TilgmannC. KaakkolaS. Characteristics of catechol O-methyltransferase (COMT) and properties of selective COMT inhibitors.Prog. Drug Res.19923929135010.1007/978‑3‑0348‑7144‑0_9 1475365
    [Google Scholar]
  11. Segura-AguilarJ. MetodiewaD. WelchC.J. Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects.Biochim. Biophys. Acta, Gen. Subj.1998138111610.1016/S0304‑4165(98)00036‑1 9659366
    [Google Scholar]
  12. MuñozP. HuenchugualaS. ParisI. Segura-AguilarJ. Dopamine oxidation and autophagy.Parkinsons Dis.2012201211310.1155/2012/920953 22966478
    [Google Scholar]
  13. ZhangS. WangR. WangG. Impact of dopamine oxidation on dopaminergic neurodegeneration.ACS Chem. Neurosci.201910294595310.1021/acschemneuro.8b00454 30592597
    [Google Scholar]
  14. Segura-AguilarJ. ParisI. Mechanisms of dopamine oxidation and Parkinson’s disease. Handbook of Neurotoxicity. KostrzewaR. New York, NYSpringer201410.1007/978‑1‑4614‑5836‑4_16
    [Google Scholar]
  15. De IuliisA. ArrigoniG. AnderssonL. ZambenedettiP. BurlinaA. JamesP. ArslanP. VianelloF. Oxidative metabolism of dopamine: A colour reaction from human midbrain analysed by mass spectrometry.Biochim. Biophys. Acta. Proteins Proteomics20081784111687169310.1016/j.bbapap.2008.07.002 18675943
    [Google Scholar]
  16. Segura-AguilarJ. ParisI. MuñozP. FerrariE. ZeccaL. ZuccaF.A. Protective and toxic roles of dopamine in Parkinson’s disease.J. Neurochem.2014129689891510.1111/jnc.12686 24548101
    [Google Scholar]
  17. SunY. PhamA.N. HareD.J. WaiteT.D. Kinetic modeling of pH-dependent oxidation of dopamine by iron and its relevance to Parkinson’s disease.Front. Neurosci.20181285910.3389/fnins.2018.00859 30534046
    [Google Scholar]
  18. ZhengW. FanH. WangL. JinZ. Oxidative self-polymerization of dopamine in an acidic environment.Langmuir20153142116711167710.1021/acs.langmuir.5b02757 26442969
    [Google Scholar]
  19. HemmatpourH. De LucaO. CrestaniD. StuartM.C.A. LasorsaA. van der WelP.C.A. LoosK. GiousisT. Haddadi-AslV. RudolfP. New insights in polydopamine formation via surface adsorption.Nat. Commun.202314166410.1038/s41467‑023‑36303‑8 36750751
    [Google Scholar]
  20. MulyatiS. MuchtarS. ArahmanN. MeirisaF. SyamsuddinY. ZuhraZ. RosnellyC.M. ShamsuddinN. Mat NawiN.I. WirzalM.D.H. BiladM.R. TakagiR. MatsuyamaH. One-pot polymerization of dopamine as an additive to enhance permeability and antifouling properties of polyethersulfone membrane.Polymers2020128180710.3390/polym12081807 32806565
    [Google Scholar]
  21. MezhuevY.O. VarankinA.V. LussA.L. DyatlovV.A. TsatsakisA.M. ShtilmanM.I. KorshakY.V. Immobilization of dopamine on the copolymer of N ‐vinyl‐2‐pyrrolidone and allyl glycidyl ether and synthesis of new hydrogels.Polym. Int.202069121275128210.1002/pi.6073
    [Google Scholar]
  22. BatulR. TamannaT. KhaliqA. YuA. Recent progress in the biomedical applications of polydopamine nanostructures.Biomater. Sci.2017571204122910.1039/C7BM00187H 28594019
    [Google Scholar]
  23. HastingsT.G. Enzymatic oxidation of dopamine: The role of prostaglandin H synthase.J. Neurochem.199564291992410.1046/j.1471‑4159.1995.64020919.x 7830086
    [Google Scholar]
  24. BacilR.P. ChenL. SerranoS.H.P. ComptonR.G. Dopamine oxidation at gold electrodes: Mechanism and kinetics near neutral pH.Phys. Chem. Chem. Phys.202022260761410.1039/C9CP05527D 31776536
    [Google Scholar]
  25. HuangfuC. LiuZ. LuX. LiuQ. WeiT. FanZ. Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries.Energy Storage Mater.20214312012910.1016/j.ensm.2021.08.043
    [Google Scholar]
  26. BisagliaM. MammiS. BubaccoL. Kinetic and structural analysis of the early oxidation products of dopamine: Analysis of the interactions with alpha-synuclein.J. Biol. Chem.200728221155971560510.1074/jbc.M610893200 17395592
    [Google Scholar]
  27. MezhuevY.O. VarankinA.V. LussA.L. DyatlovV.A. TsatsakisA.M. StratidakisA.K. KorshakY.V. Abnormally slow reaction of oppositely charged ions: The kinetics of dopamine hydrochloride oxidation by ammonium peroxydisulfate.Int. J. Chem. Kinet.202052852052510.1002/kin.21367
    [Google Scholar]
  28. RichterH.W. WaddellW.H. Mechanism of the oxidation of dopamine by the hydroxyl radical in aqueous solution.J. Am. Chem. Soc.1983105165434544010.1021/ja00354a041
    [Google Scholar]
  29. PhamA.N. WaiteT.D. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: Mechanism and kinetics.J. Inorg. Biochem.2014137748410.1016/j.jinorgbio.2014.03.018 24815905
    [Google Scholar]
  30. PalumboA. NapolitanoA. BaroneP. d’IschiaM. Nitrite- and peroxide-dependent oxidation pathways of dopamine: 6-nitrodopamine and 6-hydroxydopamine formation as potential contributory mechanisms of oxidative stress- and nitric oxide-induced neurotoxicity in neuronal degeneration.Chem. Res. Toxicol.199912121213122210.1021/tx990121g 10604871
    [Google Scholar]
  31. YangJ. Cohen StuartM.A. KampermanM. Jack of all trades: Versatile catechol crosslinking mechanisms.Chem. Soc. Rev.201443248271829810.1039/C4CS00185K 25231624
    [Google Scholar]
  32. SalomäkiM. TupalaM. ParviainenT. LeiroJ. KaronenM. LukkariJ. Preparation of thin melanin-type films by surface-controlled oxidation.Langmuir201632164103411210.1021/acs.langmuir.6b00402 27049932
    [Google Scholar]
  33. PonzioF. BarthèsJ. BourJ. MichelM. BertaniP. HemmerléJ. d’IschiaM. BallV. Oxidant control of polydopamine surface chemistry in acids: A mechanism-based entry to superhydrophilic-superoleophobic coatings.Chem. Mater.201628134697470510.1021/acs.chemmater.6b01587
    [Google Scholar]
  34. DreyerD.R. MillerD.J. FreemanB.D. PaulD.R. BielawskiC.W. Elucidating the structure of poly(dopamine).Langmuir201228156428643510.1021/la204831b 22475082
    [Google Scholar]
  35. SalomäkiM. MarttilaL. KiveläH. OuvinenT. LukkariJ. Effects of pH and oxidants on the first steps of polydopamine formation: A thermodynamic approach.J. Phys. Chem. B2018122246314632710.1021/acs.jpcb.8b02304 29787272
    [Google Scholar]
  36. LinJ. DabossS. BlaimerD. KranzC. Micro-structured polydopamine films via pulsed electrochemical deposition.Nanomaterials20199224210.3390/nano9020242 30754722
    [Google Scholar]
  37. LiuY. SuC. ZuY. ChenX. ShaJ. DaiJ. Ultrafast deposition of polydopamine for high-performance fiber-reinforced high-temperature ceramic composites.Sci. Rep.20221212048910.1038/s41598‑022‑24971‑3 36443463
    [Google Scholar]
  38. RameshA.K. ChenX. SeetohI.P. LimG.Y. TanW.X. ThirunavukkarasuV. JinT. LewW.S. LaiC. Polydopamine assisted electroless deposition of strongly adhesive nife films for flexible spintronics.ACS Appl. Mater. Interfaces2025178128051281710.1021/acsami.4c19118 39945768
    [Google Scholar]
  39. JourdainneN. MercierD. CostaB. CamposF. MonteiroC. CostaN. MartinsM.C.L. ThébaultP. Hybrid structure combining essential oil derivatives and polydopamine for anti-bacterial coatings.Colloids Surf. B Biointerfaces202525211467910.1016/j.colsurfb.2025.114679 40209606
    [Google Scholar]
  40. ChaeW.R. SongY.J. LeeN.Y. Polydopamine-mediated gold nanoparticle coating strategy and its application in photothermal polymerase chain reaction.Lab Chip20252561429143810.1039/D4LC00554F 39589462
    [Google Scholar]
  41. HasaniM. YuanW. SevariS. FerreiraL.A.Q. ChangC. DinizI.M.A. Ton-ThatH. AnsariS. MoshaveriniaA. Dopamer: A bioactive polydopamine-containing glass-ionomer cement with mineralizing and antibacterial properties.Dent. Mater.202541666667810.1016/j.dental.2025.04.003 40221335
    [Google Scholar]
  42. ChengL. ZhangH. ZhouB. WangH. SunY. PangY. DongB. Polydopamine-modified hydroxyapatite and manganese tetroxide nanozyme incorporated gelatin methacryloyl hydrogel: A multifunctional platform for anti-bacteria, immunomodulation, angiogenesis, and enhanced regeneration in infected wounds.Int. J. Biol. Macromol.2025307Pt 314183410.1016/j.ijbiomac.2025.141834 40081722
    [Google Scholar]
  43. KłosA. WierzbaS. Application of conductometric and pH metric measurements in determining the kinetics and equilibrium parameters of the heterophasic ion exchange: Metal cation-proton.Electrochem. Commun.201910251210.1016/j.elecom.2019.03.011
    [Google Scholar]
  44. LilerM. 570. Conductometric investigation of kinetics of reactions in 100% sulphuric acid. Part I. The decomposition of oxalic acid at 25°.J. Chem. Soc.19633106311310.1039/JR9630003106
    [Google Scholar]
  45. SayedR.A. ElmasryM.S. HassanW.S. El-MammliM.Y. ShalabyA. Development and application of degradation kinetics of thin layer chromatographic densitometry and conductometric methods for butoconazole nitrate determination.Ann. Pharm. Fr.201876645346310.1016/j.pharma.2018.07.007 30172352
    [Google Scholar]
  46. LisikA. MusiałW. Conductomeric evaluation of the release kinetics of active substances from pharmaceutical preparations containing iron ions.Materials201912573010.3390/ma12050730 30832401
    [Google Scholar]
  47. NaberukhinY.I. ShuiskiiS.I. Anomalous mobility of proton in aqueous systems and structure of water.J. Struct. Chem.197011218819510.1007/BF00745218
    [Google Scholar]
  48. SchindlerS. BechtoldT. Mechanistic insights into the electrochemical oxidation of dopamine by cyclic voltammetry.J. Electroanal. Chem.20198369410110.1016/j.jelechem.2019.01.069
    [Google Scholar]
  49. ZhangX-P. SunW. CaoS-H. JiangW-L. PengH. CaiS-H. ChenZ. NMR spectroelectrochemistry in studies of dopamine oxidation.Electrochemistry 202088320020410.5796/electrochemistry.19‑00083
    [Google Scholar]
  50. YuS. PengY. ShaoP. WangY. HeY. RenW. YangL. ShiH. LuoX. Electron-transfer-based peroxymonosulfate activation on defect-rich carbon nanotubes: Understanding the substituent effect on the selective oxidation of phenols.J. Hazard. Mater.202344213010810.1016/j.jhazmat.2022.130108 36209610
    [Google Scholar]
  51. KolthoffI.M. MillerI.K. The chemistry of persulfate. i. the kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1.J. Am. Chem. Soc.19517373055305910.1021/ja01151a024
    [Google Scholar]
  52. MaJ. LiH. ChiL. ChenH. ChenC. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature.Chemosphere2017189869310.1016/j.chemosphere.2017.09.051 28934658
    [Google Scholar]
  53. FilogranaR. BeltraminiM. BubaccoL. BisagliaM. Anti-oxidants in Parkinson’s disease therapy: A critical point of view.Curr. Neuropharmacol.201614326027110.2174/1570159X13666151030102718 26517052
    [Google Scholar]
  54. ParkH.A. EllisA.C. Dietary antioxidants and Parkinson’s disease.Antioxidants20209757010.3390/antiox9070570 32630250
    [Google Scholar]
  55. Duarte-JuradoA.P. Gopar-CuevasY. Saucedo-CardenasO. Loera-AriasM.J. Montes-de-Oca-LunaR. Garcia-GarciaA. Rodriguez-RochaH. Antioxidant therapeutics in Parkinson’s disease: Current challenges and opportunities.Antioxidants202110345310.3390/antiox10030453 33803945
    [Google Scholar]
  56. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.9498 20716914
    [Google Scholar]
  57. BojarczukA. Dzitkowska-ZabielskaM. Polyphenol supplementation and antioxidant status in athletes: A narrative review.Nutrients202215115810.3390/nu15010158 36615815
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372398080250811071652
Loading
/content/journals/cocat/10.2174/0122133372398080250811071652
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test