Skip to content
2000
image of Kinetic Aspects and Mechanism of Peroxide Biomimetic Oxidation of Dopamine in Aqueous Solution

Abstract

Background

Oxidation with peroxides plays an important role in dopamine catabolism, the disruption of which is responsible for the development of neurodegenerative diseases, including Parkinson's disease. However, the mechanism of dopamine oxidation with peroxides has not been studied in detail, indicating the need to develop the kinetic patterns of the model reaction between dopamine hydrochloride and potassium peroxodisulfate.

Objective

This article aims to establish the kinetic patterns of dopamine hydrochloride oxidation in the presence of potassium peroxodisulfate using the conductometry method to monitor the reaction rate.

Methods

Conversion monitoring of dopamine hydrochloride and potassium peroxodisulfate was conducted by conductometry, which demonstrated high efficiency and was in good agreement with results independently obtained by potentiometry and UV spectroscopy.

Results

The use of conductometry to monitor the current concentration of dopamine during its oxidation in the presence of peroxodisulfate anion is described for the first time. It was found that the activation energy of dopamine hydrochloride oxidation by potassium peroxodisulfate is approximately 60 kJ mol-1, and the reaction proceeds through a highly ordered transition state with an activation entropy of –127 J mol-1 K-1, under the first-order kinetic law.

Conclusion

It is shown that dopamine acts as an activator of peroxide breakdown and can potentially serve as a source of radicals for the development of oxidative stress, which is one of the causes of neurodegenerative diseases, such as Parkinson's disease. To explain the first order of the reaction and the small value of the pre-exponential factor, an assumption was made about the intermediate formation of charge-transfer complexes between dopamine and the peroxodisulfate anion, as well as about the pronounced hydration of the transition state formed when these reagents approach each other.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372398080250811071652
2025-08-27
2025-09-27
Loading full text...

Full text loading...

References

  1. Speranza L. di Porzio U. Viggiano D. de Donato A. Volpicelli F. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells 2021 10 4 735 10.3390/cells10040735 33810328
    [Google Scholar]
  2. Nagats T. Genes for human catecholamine-synthesizing enzymes. Neurosci. Res. 1991 12 2 315 345 10.1016/0168‑0102(91)90001‑F 1684650
    [Google Scholar]
  3. Cosentino M. Marino F. Maestroni G.J.M. Sympathoadrenergic modulation of hematopoiesis: A review of available evidence and of therapeutic perspectives. Front. Cell. Neurosci. 2015 9 302 10.3389/fncel.2015.00302 26300737
    [Google Scholar]
  4. Snider S.R. Carlsson A. The adrenal dopamine as an indicator of adrenomedullary hormone biosynthesis. Naunyn Schmiedebergs Arch. Pharmacol. 1972 275 4 347 357 10.1007/BF00501124 4144189
    [Google Scholar]
  5. Pernet A. Hammond V.A. Blesa-Malpica G. Burrin J. Orskov H. Alberti K.G. Johnston D.G. The metabolic effects of dopamine in man. Eur. J. Clin. Pharmacol. 1984 26 1 23 28 10.1007/BF00546703 6143668
    [Google Scholar]
  6. Meiser J. Weindl D. Hiller K. Complexity of dopamine metabolism. Cell Commun. Signal. 2013 11 1 34 10.1186/1478‑811X‑11‑34 23683503
    [Google Scholar]
  7. Elsworth J.D. Roth R.H. Dopamine synthesis, uptake, metabolism, and receptors: Relevance to gene therapy of Parkinson’s disease. Exp. Neurol. 1997 144 1 4 9 10.1006/exnr.1996.6379 9126143
    [Google Scholar]
  8. Rubí B. Maechler P. Minireview: New roles for peripheral dopamine on metabolic control and tumor growth: Let’s seek the balance. Endocrinology 2010 151 12 5570 5581 10.1210/en.2010‑0745 21047943
    [Google Scholar]
  9. Bromek E. Haduch A. Gołembiowska K. Daniel W.A. Cytochrome P450 mediates dopamine formation in the brain in vivo. J. Neurochem. 2011 118 5 806 815 10.1111/j.1471‑4159.2011.07339.x 21651557
    [Google Scholar]
  10. Männistö P.T. Ulmanen I. Lundström K. Taskinen J. Tenhunen J. Tilgmann C. Kaakkola S. Characteristics of catechol O-methyltransferase (COMT) and properties of selective COMT inhibitors. Prog. Drug Res. 1992 39 291 350 10.1007/978‑3‑0348‑7144‑0_9 1475365
    [Google Scholar]
  11. Segura-Aguilar J. Metodiewa D. Welch C.J. Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim. Biophys. Acta, Gen. Subj. 1998 1381 1 1 6 10.1016/S0304‑4165(98)00036‑1 9659366
    [Google Scholar]
  12. Muñoz P. Huenchuguala S. Paris I. Segura-Aguilar J. Dopamine oxidation and autophagy. Parkinsons Dis. 2012 2012 1 13 10.1155/2012/920953 22966478
    [Google Scholar]
  13. Zhang S. Wang R. Wang G. Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem. Neurosci. 2019 10 2 945 953 10.1021/acschemneuro.8b00454 30592597
    [Google Scholar]
  14. Segura-Aguilar J. Paris I. Kostrzewa R. Mechanisms of Dopamine Oxidation and Parkinson’s Disease. Handbook of Neurotoxicity. Springer New York, NY 2014 10.1007/978‑1‑4614‑5836‑4_16
    [Google Scholar]
  15. De Iuliis A. Arrigoni G. Andersson L. Zambenedetti P. Burlina A. James P. Arslan P. Vianello F. Oxidative metabolism of dopamine: A colour reaction from human midbrain analysed by mass spectrometry. Biochim. Biophys. Acta. Proteins Proteomics 2008 1784 11 1687 1693 10.1016/j.bbapap.2008.07.002 18675943
    [Google Scholar]
  16. Segura-Aguilar J. Paris I. Muñoz P. Ferrari E. Zecca L. Zucca F.A. Protective and toxic roles of dopamine in Parkinson’s disease. J. Neurochem. 2014 129 6 898 915 10.1111/jnc.12686 24548101
    [Google Scholar]
  17. Sun Y. Pham A.N. Hare D.J. Waite T.D. Kinetic modeling of pH-dependent oxidation of dopamine by iron and its relevance to Parkinson’s disease. Front. Neurosci. 2018 12 859 10.3389/fnins.2018.00859 30534046
    [Google Scholar]
  18. Zheng W. Fan H. Wang L. Jin Z. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir 2015 31 42 11671 11677 10.1021/acs.langmuir.5b02757 26442969
    [Google Scholar]
  19. Hemmatpour H. De Luca O. Crestani D. Stuart M.C.A. Lasorsa A. van der Wel P.C.A. Loos K. Giousis T. Haddadi-Asl V. Rudolf P. New insights in polydopamine formation via surface adsorption. Nat. Commun. 2023 14 1 664 10.1038/s41467‑023‑36303‑8 36750751
    [Google Scholar]
  20. Mulyati S. Muchtar S. Arahman N. Meirisa F. Syamsuddin Y. Zuhra Z. Rosnelly C.M. Shamsuddin N. Mat Nawi N.I. Wirzal M.D.H. Bilad M.R. Takagi R. Matsuyama H. One-pot polymerization of dopamine as an additive to enhance permeability and antifouling properties of polyethersulfone membrane. Polymers 2020 12 8 1807 10.3390/polym12081807 32806565
    [Google Scholar]
  21. Mezhuev Y.O. Varankin A.V. Luss A.L. Dyatlov V.A. Tsatsakis A.M. Shtilman M.I. Korshak Y.V. Immobilization of dopamine on the copolymer of N ‐vinyl‐2‐pyrrolidone and allyl glycidyl ether and synthesis of new hydrogels. Polym. Int. 2020 69 12 1275 1282 10.1002/pi.6073
    [Google Scholar]
  22. Batul R. Tamanna T. Khaliq A. Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater. Sci. 2017 5 7 1204 1229 10.1039/C7BM00187H 28594019
    [Google Scholar]
  23. Hastings T.G. Enzymatic oxidation of dopamine: The role of prostaglandin H synthase. J. Neurochem. 1995 64 2 919 924 10.1046/j.1471‑4159.1995.64020919.x 7830086
    [Google Scholar]
  24. Bacil R.P. Chen L. Serrano S.H.P. Compton R.G. Dopamine oxidation at gold electrodes: Mechanism and kinetics near neutral pH. Phys. Chem. Chem. Phys. 2020 22 2 607 614 10.1039/C9CP05527D 31776536
    [Google Scholar]
  25. Huangfu C. Liu Z. Lu X. Liu Q. Wei T. Fan Z. Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Mater. 2021 43 120 129 10.1016/j.ensm.2021.08.043
    [Google Scholar]
  26. Bisaglia M. Mammi S. Bubacco L. Kinetic and structural analysis of the early oxidation products of dopamine: Analysis of the interactions with alpha-synuclein. J. Biol. Chem. 2007 282 21 15597 15605 10.1074/jbc.M610893200 17395592
    [Google Scholar]
  27. Mezhuev Y.O. Varankin A.V. Luss A.L. Dyatlov V.A. Tsatsakis A.M. Stratidakis A.K. Korshak Y.V. Abnormally slow reaction of oppositely charged ions: The kinetics of dopamine hydrochloride oxidation by ammonium peroxydisulfate. Int. J. Chem. Kinet. 2020 52 8 520 525 10.1002/kin.21367
    [Google Scholar]
  28. Richter H.W. Waddell W.H. Mechanism of the oxidation of dopamine by the hydroxyl radical in aqueous solution. J. Am. Chem. Soc. 1983 105 16 5434 5440 10.1021/ja00354a041
    [Google Scholar]
  29. Pham A.N. Waite T.D. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: Mechanism and kinetics. J. Inorg. Biochem. 2014 137 74 84 10.1016/j.jinorgbio.2014.03.018 24815905
    [Google Scholar]
  30. Palumbo A. Napolitano A. Barone P. d’Ischia M. Nitrite- and peroxide-dependent oxidation pathways of dopamine: 6-nitrodopamine and 6-hydroxydopamine formation as potential contributory mechanisms of oxidative stress- and nitric oxide-induced neurotoxicity in neuronal degeneration. Chem. Res. Toxicol. 1999 12 12 1213 1222 10.1021/tx990121g 10604871
    [Google Scholar]
  31. Yang J. Cohen Stuart M.A. Kamperman M. Jack of all trades: Versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 2014 43 24 8271 8298 10.1039/C4CS00185K 25231624
    [Google Scholar]
  32. Salomäki M. Tupala M. Parviainen T. Leiro J. Karonen M. Lukkari J. Preparation of thin melanin-type films by surface-controlled oxidation. Langmuir 2016 32 16 4103 4112 10.1021/acs.langmuir.6b00402 27049932
    [Google Scholar]
  33. Ponzio F. Barthès J. Bour J. Michel M. Bertani P. Hemmerlé J. d’Ischia M. Ball V. Oxidant control of polydopamine surface chemistry in acids: A mechanism-based entry to superhydrophilic-superoleophobic coatings. Chem. Mater. 2016 28 13 4697 4705 10.1021/acs.chemmater.6b01587
    [Google Scholar]
  34. Dreyer D.R. Miller D.J. Freeman B.D. Paul D.R. Bielawski C.W. Elucidating the structure of poly(dopamine). Langmuir 2012 28 15 6428 6435 10.1021/la204831b 22475082
    [Google Scholar]
  35. Salomäki M. Marttila L. Kivelä H. Ouvinen T. Lukkari J. Effects of pH and oxidants on the first steps of polydopamine formation: A thermodynamic approach. J. Phys. Chem. B 2018 122 24 6314 6327 10.1021/acs.jpcb.8b02304 29787272
    [Google Scholar]
  36. Lin J. Daboss S. Blaimer D. Kranz C. Micro-structured polydopamine films via pulsed electrochemical deposition. Nanomaterials 2019 9 2 242 10.3390/nano9020242 30754722
    [Google Scholar]
  37. Liu Y. Su C. Zu Y. Chen X. Sha J. Dai J. Ultrafast deposition of polydopamine for high-performance fiber-reinforced high-temperature ceramic composites. Sci. Rep. 2022 12 1 20489 10.1038/s41598‑022‑24971‑3 36443463
    [Google Scholar]
  38. Ramesh A.K. Chen X. Seetoh I.P. Lim G.Y. Tan W.X. Thirunavukkarasu V. Jin T. Lew W.S. Lai C. Polydopamine assisted electroless deposition of strongly adhesive nife films for flexible spintronics. ACS Appl. Mater. Interfaces 2025 17 8 12805 12817 10.1021/acsami.4c19118 39945768
    [Google Scholar]
  39. Jourdainne N. Mercier D. Costa B. Campos F. Monteiro C. Costa N. Martins M.C.L. Thébault P. Hybrid structure combining essential oil derivatives and polydopamine for anti-bacterial coatings. Colloids Surf. B Biointerfaces 2025 252 114679 10.1016/j.colsurfb.2025.114679 40209606
    [Google Scholar]
  40. Chae W.R. Song Y.J. Lee N.Y. Polydopamine-mediated gold nanoparticle coating strategy and its application in photothermal polymerase chain reaction. Lab Chip 2025 25 6 1429 1438 10.1039/D4LC00554F 39589462
    [Google Scholar]
  41. Hasani M. Yuan W. Sevari S. Ferreira L.A.Q. Chang C. Diniz I.M.A. Ton-That H. Ansari S. Moshaverinia A. Dopamer: A bioactive polydopamine-containing glass-ionomer cement with mineralizing and antibacterial properties. Dent. Mater. 2025 41 6 666 678 10.1016/j.dental.2025.04.003 40221335
    [Google Scholar]
  42. Cheng L. Zhang H. Zhou B. Wang H. Sun Y. Pang Y. Dong B. Polydopamine-modified hydroxyapatite and manganese tetroxide nanozyme incorporated gelatin methacryloyl hydrogel: A multifunctional platform for anti-bacteria, immunomodulation, angiogenesis, and enhanced regeneration in infected wounds. Int. J. Biol. Macromol. 2025 307 Pt 3 141834 10.1016/j.ijbiomac.2025.141834 40081722
    [Google Scholar]
  43. Kłos A. Wierzba S. Application of conductometric and pH metric measurements in determining the kinetics and equilibrium parameters of the heterophasic ion exchange: Metal cation-proton. Electrochem. Commun. 2019 102 5 12 10.1016/j.elecom.2019.03.011
    [Google Scholar]
  44. Liler M. 570. Conductometric investigation of kinetics of reactions in 100% sulphuric acid. Part I. The decomposition of oxalic acid at 25°. J. Chem. Soc. 1963 0 0 3106 3113 10.1039/JR9630003106
    [Google Scholar]
  45. Sayed R.A. Elmasry M.S. Hassan W.S. El-Mammli M.Y. Shalaby A. Development and application of degradation kinetics of thin layer chromatographic densitometry and conductometric methods for butoconazole nitrate determination. Ann. Pharm. Fr. 2018 76 6 453 463 10.1016/j.pharma.2018.07.007 30172352
    [Google Scholar]
  46. Lisik A. Musiał W. Conductomeric evaluation of the release kinetics of active substances from pharmaceutical preparations containing iron ions. Materials 2019 12 5 730 10.3390/ma12050730 30832401
    [Google Scholar]
  47. Naberukhin Y.I. Shuiskii S.I. Anomalous mobility of proton in aqueous systems and structure of water. J. Struct. Chem. 1970 11 2 188 195 10.1007/BF00745218
    [Google Scholar]
  48. Schindler S. Bechtold T. Mechanistic insights into the electrochemical oxidation of dopamine by cyclic voltammetry. J. Electroanal. Chem. 2019 836 94 101 10.1016/j.jelechem.2019.01.069
    [Google Scholar]
  49. Zhang X-P. Sun W. Cao S-H. Jiang W-L. Peng H. Cai S-H. Chen Z. NMR spectroelectrochemistry in studies of dopamine oxidation. Electrochemistry 2020 88 3 200 204 10.5796/electrochemistry.19‑00083
    [Google Scholar]
  50. Yu S. Peng Y. Shao P. Wang Y. He Y. Ren W. Yang L. Shi H. Luo X. Electron-transfer-based peroxymonosulfate activation on defect-rich carbon nanotubes: Understanding the substituent effect on the selective oxidation of phenols. J. Hazard. Mater. 2023 442 130108 10.1016/j.jhazmat.2022.130108 36209610
    [Google Scholar]
  51. Kolthoff I.M. Miller I.K. The chemistry of persulfate. i. the kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. J. Am. Chem. Soc. 1951 73 7 3055 3059 10.1021/ja01151a024
    [Google Scholar]
  52. Ma J. Li H. Chi L. Chen H. Chen C. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere 2017 189 86 93 10.1016/j.chemosphere.2017.09.051 28934658
    [Google Scholar]
  53. Filograna R. Beltramini M. Bubacco L. Bisaglia M. Anti-oxidants in Parkinson’s disease therapy: A critical point of view. Curr. Neuropharmacol. 2016 14 3 260 271 10.2174/1570159X13666151030102718 26517052
    [Google Scholar]
  54. Park H.A. Ellis A.C. Dietary antioxidants and Parkinson’s disease. Antioxidants 2020 9 7 570 10.3390/antiox9070570 32630250
    [Google Scholar]
  55. Duarte-Jurado A.P. Gopar-Cuevas Y. Saucedo-Cardenas O. Loera-Arias M.J. Montes-de-Oca-Luna R. Garcia-Garcia A. Rodriguez-Rocha H. Antioxidant therapeutics in Parkinson’s disease: Current challenges and opportunities. Antioxidants 2021 10 3 453 10.3390/antiox10030453 33803945
    [Google Scholar]
  56. Pandey K.B. Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009 2 5 270 278 10.4161/oxim.2.5.9498 20716914
    [Google Scholar]
  57. Bojarczuk A. Dzitkowska-Zabielska M. Polyphenol supplementation and antioxidant status in athletes: A narrative review. Nutrients 2022 15 1 158 10.3390/nu15010158 36615815
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372398080250811071652
Loading
/content/journals/cocat/10.2174/0122133372398080250811071652
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test