Skip to content
2000
image of Synthesis of SO3H@Carbon Powder from Waste Litchi Peels and its Catalytic Efficacy for the Synthesis of 4-(Substituted Phenylamino)-2H-Chromen-2-ones under Microwave Irradiation

Abstract

Background

Sulfonated carbon (C-SOH) nano/micro powder derived from waste biomaterial offers a green catalytic approach in several chemical transformations due to its good performance and reusability. In this report, we synthesized carbon powder from waste litchi peels (LPC) and integrated it with sulfonic acid to obtain LPC-SOH as a heterogeneous solid acid catalyst.

Objective

The objective of this work is the development of a biowaste-derived solid acid catalyst and the investigation of its catalytic application in the synthesis of 4-(substituted phenylamino)-2H-chromen-2-ones.

Methods

The LPC-SOH was synthesized by first pyrolyzing waste litchi peel at 400°C for approximately 2 hours, followed by sulfonation with concentrated HSO. The prepared LPC-SOH was characterized by XRD, FT-IR, SEM-EDX, and XPS binding studies. The catalytic application of LPC-SOH powder was evaluated for the synthesis of 4-(substituted phenylamino)-2H-chromen-2-ones under microwave irradiation.

Results

The characterization techniques confirmed the formation of LPC-SOH, and acid-base titration showed the total acidity of LPC-SOH to be 2.05 mmol/g.

Conclusion

The LPC-SOH powder was found to be a good, recyclable catalyst for the synthesis of the targeted 4-(substituted phenylamino)-2-chromen-2-ones with a simple work-up procedure

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372381264250703215419
2025-07-16
2025-09-06
Loading full text...

Full text loading...

References

  1. Kobayashi S. Manabe K. Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc. Chem. Res. 2002 35 4 209 217 10.1021/ar000145a 11955049
    [Google Scholar]
  2. Sanz R. Miguel D. Martínez A. Álvarez-Gutiérrez J.M. Rodríguez F. Brønsted acid catalyzed propargylation of 1,3-dicarbonyl derivatives. Synthesis of tetrasubstituted furans. Org. Lett. 2007 9 4 727 730 10.1021/ol0631298 17256951
    [Google Scholar]
  3. Sanz R. Martínez A. Miguel D. Álvarez-Gutiérrez J.M. Rodríguez F. Brønsted acid catalyzed nucleophilic substitution of alcohols. Adv. Synth. Catal. 2006 348 14 1841 1845 10.1002/adsc.200606183
    [Google Scholar]
  4. Friend C.M. Xu B. Heterogeneous catalysis: A central science for a sustainable future. Acc. Chem. Res. 2017 50 3 517 521 10.1021/acs.accounts.6b00510 28945397
    [Google Scholar]
  5. Collis A.E.C. Horváth I.T. Heterogenization of homogeneous catalytic systems. Catal. Sci. Technol. 2011 1 6 912 919 10.1039/c1cy00174d
    [Google Scholar]
  6. Clark J.H. Macquarrie D.J. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem. Commun. (Camb.) 1998 8 853 860 10.1039/a709143e
    [Google Scholar]
  7. Saluzzo C. ter Halle R. Touchard F. Fache F. Schulz E. Lemaire M. Recent progress in asymmetric heterogeneous catalysis: Use of polymer-supported catalysts. J. Organomet. Chem. 2000 603 1 30 39 10.1016/S0022‑328X(00)00050‑4
    [Google Scholar]
  8. Pal N. Bhaumik A. Mesoporous materials: Versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. RSC Advances 2015 5 31 24363 24391 10.1039/C4RA13077D
    [Google Scholar]
  9. Muskan; Gangadharan, A.; Goel, P.; Patel, M.; Verma, A.K. Recent applications of nanoparticles in organic transformations. Org. Biomol. Chem. 2022 20 35 6979 6993 10.1039/D2OB01114J 35972027
    [Google Scholar]
  10. Safari Yazd M. Motahari S. Rahimpour M.R. Froud Moorjani S. Sobhani Bazghaleh F. The support effect on the performance of a MOF-derived Co-based nano-catalyst in Fischer Tropsch synthesis. Nanoscale 2024 16 41 19422 19444 10.1039/D4NR02499K 39347750
    [Google Scholar]
  11. Li W.J. Wang Z.Q. Wang J.B. Wu R. Shi H.W. Liu E.X. Zhang M. Zhang Z-H. Room temperature synthesis of -ketonitriles catalyzed by metal–organic framework supported Pd nanoparticles. J. Catal. 2024 430 115308 10.1016/j.jcat.2024.115308
    [Google Scholar]
  12. Li W.J. Wang J.B. Liu Y.H. Zhang M. Zhang Z.H. Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chin. Chem. Lett. 2025 36 3 110001 10.1016/j.cclet.2024.110001
    [Google Scholar]
  13. Di J.Q. Zhang M. Chen Y.X. Wang J.X. Geng S.S. Tang J.Q. Zhang Z.H. Copper anchored on phosphorus g-C3N4 as a highly efficient photocatalyst for the synthesis of N-arylpyridin-2-amines. Green Chem. 2021 23 2 1041 1049 10.1039/D0GC03400B
    [Google Scholar]
  14. Varma R.S. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain. Chem.& Eng. 2019 7 7 6458 6470 10.1021/acssuschemeng.8b06550
    [Google Scholar]
  15. Zhang S.Z. Cui Z.S. Zhang M. Zhang Z.H. Biochar-based functional materials as heterogeneous catalysts for organic reactions. Curr. Opin. Green Sustain. Chem. 2022 38 100713 10.1016/j.cogsc.2022.100713
    [Google Scholar]
  16. Chong C.C. Cheng Y.W. Lam M.K. Setiabudi H.D. Vo D.V.N. State of the art of the synthesis and applications of sulfonated carbon based catalysts for biodiesel production: A review. Energy Technol. 2021 9 9 2100303 10.1002/ente.202100303
    [Google Scholar]
  17. Singh R. Yadav S. Bhardwaj D. Saini M.R. SO3 H functionalized carbon materials: A versatile and sustainable heterogeneous catalyst for diverse organic transformations. Chem. Sel 2023 8 48 202302786 10.1002/slct.202302786
    [Google Scholar]
  18. Konwar L.J. Mäki-Arvela P. Mikkola J.P. SO3 H-containing functional carbon materials: Synthesis, structure, and acid catalysis. Chem. Rev. 2019 119 22 11576 11630 10.1021/acs.chemrev.9b00199 31589024
    [Google Scholar]
  19. Shetty A. Molahalli V. Sharma A. Hegde G. Biomass-derived carbon materials in heterogeneous catalysis: A step towards sustainable future. Catalysts 2022 13 1 20 10.3390/catal13010020
    [Google Scholar]
  20. Zhu S. Ke J. Li X. Zheng Z. Guo R. Chen J. Biomass derived sulfonated carbon catalysts: Efficient catalysts for green chemistry. Green Chem. 2024 26 11 6361 6381 10.1039/D4GC00113C
    [Google Scholar]
  21. Ngaosuwan K. Goodwin J.G. Prasertdham P. A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renew. Energy 2016 86 262 269 10.1016/j.renene.2015.08.010
    [Google Scholar]
  22. Mardhiah H.H. Ong H.C. Masjuki H.H. Lim S. Pang Y.L. Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Convers. Manage. 2017 144 10 17 10.1016/j.enconman.2017.04.038
    [Google Scholar]
  23. Rocha P.D. Oliveira L.S. Franca A.S. Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renew. Energy 2019 143 1710 1716 10.1016/j.renene.2019.05.070
    [Google Scholar]
  24. Suganuma S. Nakajima K. Kitano M. Hayashi S. Hara M. sp3 -linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst. ChemSusChem 2012 5 9 1841 1846 10.1002/cssc.201200010 22740285
    [Google Scholar]
  25. Lathiya D.R. Bhatt D.V. Maheria K.C. Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresour. Technol. Rep. 2018 2 69 76 10.1016/j.biteb.2018.04.007
    [Google Scholar]
  26. Ghorbani F. Pourmousavi S.A. Kiyani H. Novel carbon-based solid acid from green pistachio peel as an efficient catalyst for the chemoselective acylation, acetalization and thioacetalization of aldehydes, synthesis of biscoumarins and antimicrobial evaluation. Curr. Organocatal. 2019 7 1 55 80 10.2174/2213337206666190717164606
    [Google Scholar]
  27. Kalimani F.M. Shojaei A.F. Samavi L. Introduction of sulfonated bamboo (bamboo-SO3H) as a new catalyst for the facile synthesis of bis (indolyl) methanes. Iran J. Catal. 2019 9 193 199
    [Google Scholar]
  28. Nagasundaram N. Kokila M. Sivaguru P. Santhosh R. Lalitha A. SO3H@carbon powder derived from waste orange peel: An efficient, nano-sized greener catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Adv. Powder Technol. 2020 31 4 1516 1528 10.1016/j.apt.2020.01.012
    [Google Scholar]
  29. Singh R. Ganaie S.A. Singh A. Chaudhary A. Carbon-SO 3 H catalyzed expedient synthesis of new spiro-[indeno[1,2- b]quinoxaline-[11,2 ]-thiazolidine]-4 -ones as biologically important scaffold. Synth. Commun. 2019 49 1 80 93 10.1080/00397911.2018.1542003
    [Google Scholar]
  30. Singh R. Singh A. Bhardwaj D. Selective and solvent free synthesis of isoxazole containing spiro thiazolidinones using tio 2 SO 3 H as solid catalyst. ChemistrySelect 2019 4 33 9600 9607 10.1002/slct.201901942
    [Google Scholar]
  31. Bhardwaj D. Singh A. Singh R. Eco-compatible sonochemical synthesis of 8-aryl-7,8-dihydro-[1,3]-dioxolo[4,5-g]quinolin-6(5H)-ones using green TiO2. Heliyon 2019 5 2 01256 10.1016/j.heliyon.2019.e01256 30886920
    [Google Scholar]
  32. Bhardwaj D. Dhawan K. Singh R. On water greener synthesis of pyrido[2,3-d]pyrimidines using Ag-TiO2 nanocomposite catalyst under sonication. J. Indian Chem. Soc. 2022 19 3 1003 1013 10.1007/s13738‑021‑02353‑2
    [Google Scholar]
  33. Dhawan K. Bhardwaj D. Singh R. An efficient nano titania-supported sulfonic acid (n-TSA) catalyzed solvent-free synthesis of isoxazolyl-thiazolidinones. Mater. Today 2021 43 3231 3235
    [Google Scholar]
  34. Chukwuma C.I. Izu G.O. Chukwuma M.S. Samson M.S. Makhafola T.J. Erukainure O.L. A review on the medicinal potential, toxicology, and phytochemistry of litchi fruit peel and seed. J. Food Biochem. 2021 45 12 13997 10.1111/jfbc.13997 34750843
    [Google Scholar]
  35. Rawat A. Reddy V.B. A recent advances on anticancer activity of coumarin derivatives. Eur. J. Med. Chem. Rep. 2022 5 100038 10.1016/j.ejmcr.2022.100038
    [Google Scholar]
  36. Sadeghpour M. Olyaei A. Adl A. 4-Aminocoumarin derivatives: Synthesis and applications. New J. Chem. 2021 45 13 5744 5763 10.1039/D1NJ00614B
    [Google Scholar]
  37. Zagorevskii V.L. Savel’ev N.V. Investigation on pyran and related compounds. Chem. Heterocycl. Compd. 1970 6 947 951 10.1007/BF00480619
    [Google Scholar]
  38. Zagorevskii V.A. Savel’ev V.L. Meshcheryakova L.M. Study in pyrane series and relative compounds. 42. On synthesis of 4-aminocoumarins and on mechanism of halogen substitution in 4-chlorocoumarin. Khim Geterotsikl Soed 1970 8 1019 1023
    [Google Scholar]
  39. Newman M.S. Perry C.Y. The synthesis of new heterocyclic compounds from 3, 4-dichlorocoumarins. J. Org. Chem. 1963 28 1 116 120 10.1021/jo01036a026
    [Google Scholar]
  40. Bistrovi A.; Stipani ev, N.; Opa ak-Bernardi, T.; Juki M.; Martinez, S.; Glavaš-Obrovac, L.; Rai -Mali S. Synthesis of 4-aryl-1,2,3-triazolyl appended natural coumarin-related compounds with antiproliferative and radical scavenging activities and intracellular ROS production modification. New J. Chem. 2017 41 15 7531 7543 10.1039/C7NJ01469D
    [Google Scholar]
  41. Achar G. Shahini C.R. Patil S.A. Ma ecki, J.G.; Budagumpi, S. Coumarin-substituted 1, 2, 4-triazole-derived silver (I) and gold (I) complexes: Synthesis, characterization and anticancer studies. New J. Chem. 2019 43 3 1216 1229 10.1039/C8NJ02927J
    [Google Scholar]
  42. Tabakovi K.; Tabakovi I.; Ajdini, N.; Leci, O. A Novel Transformation of 4-Arylaminocoumarins to 6 H-1-Benzopyrano[4,3-b]quinolin-6-ones Under V ilsmeier-Haack Conditions. Synthesis 1987 1987 3 308 310 10.1055/s‑1987‑27930
    [Google Scholar]
  43. Jacquot Y. Laïos I. Cleeren A. Nonclercq D. Bermont L. Refouvelet B. Boubekeur K. Xicluna A. Leclercq G. Laurent G. Synthesis, structure, and estrogenic activity of 4-amino-3-(2-methylbenzyl)coumarins on human breast carcinoma cells. Bioorg. Med. Chem. 2007 15 6 2269 2282 10.1016/j.bmc.2007.01.025 17275315
    [Google Scholar]
  44. Joshi S.D. Sakhardande V.D. Seshadri S. Synthesis of 3-substituted 5 (h)-oxo [1] benzopyrano-[4, 3-b] pyridines and 2, 3-diaryl-4 (h)-oxo [1] benzopyrano-[4, 3-b] pyrrolesIndian J. Chem. Sect B 1984 23 206 208
    [Google Scholar]
  45. Ivanov I.C. Karagiosov S.K. Manolov I. Synthesis of 4 (Monoalkylamino) coumarins. Arch. Pharm. 1991 324 1 61 62 10.1002/ardp.19913240118
    [Google Scholar]
  46. Stoyanov E.V. Ivanov I.C. Convenient replacement of the hydroxy by an amino group in 4 hydroxycoumarin and 4-hydroxy-6-methyl-2-pyrone under microwave irradiation. Molecules 2004 9 8 627 631 10.3390/90800627 18007464
    [Google Scholar]
  47. Chavan A.P. Microwave assisted synthesis of 4-aryl/alkylaminocoumarins. J. Chem. Res. 2006 2006 3 179 181 10.3184/030823406776330675
    [Google Scholar]
  48. Araujo R.O. Chaar J.S. Queiroz L.S. da Rocha Filho G.N. da Costa C.E.F. da Silva G.C.T. Landers R. Costa M.J.F. Gonçalves A.A.S. de Souza L.K.C. Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energy Convers. Manage. 2019 196 821 830 10.1016/j.enconman.2019.06.059
    [Google Scholar]
  49. Aldana-Pérez A. Lartundo-Rojas L. Gómez R. Niño-Gómez M.E. Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel 2012 100 128 138 10.1016/j.fuel.2012.02.025
    [Google Scholar]
  50. Yadav N. Yadav G. Ahmaruzzaman M. Microwave-assisted biodiesel production using –SO3H functionalized heterogeneous catalyst derived from a lignin-rich biomass. Sci. Rep. 2023 13 1 9074 10.1038/s41598‑023‑36380‑1 37277444
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372381264250703215419
Loading
/content/journals/cocat/10.2174/0122133372381264250703215419
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: amines ; litchi peel ; Heterogeneous catalysts ; 4-aminocoumarins ; sulfonated carbons ; biowaste
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test