Skip to content
2000
image of Development of an Eco-Friendly Mechanochemical-Assisted Extraction of the Sulfated Polysaccharide Ulvan from the Green Seaweed Ulva lactuca

Abstract

Background

Ulvan, a sulfated polysaccharide derived from the green seaweed , is widely used in different industrial applications. However, achieving a high yield of ulvan requires an efficient extraction method. Mechanochemical-assisted extraction (MCAE) is an eco-friendly and effective technique commonly used for extracting natural products, including polysaccharides.

Objective

This study aims to extract ulvan using the MCAE method and optimizes the extraction conditions using the Box-Behnken design (BBD) of Response Surface Methodology (RSM).

Methods

The extraction parameters optimized included solid reagent concentration, milling time, solid/liquid ratio, extraction time, and temperature. Analysis of variance (ANOVA) was applied to assess the statistical significance of the model. Fourier transform infrared (FTIR) spectroscopy was performed to confirm the structural features of the extracted ulvan. Scanning electron microscopy (SEM) analysis revealed the morphological changes in before and after mechanochemical treatment.

Results

The optimized extraction conditions were 36.33% solid reagent (NaCO), 29.75 minutes of milling time, a solid/liquid ratio of 1:24.98 (g/ml), an extraction time of 140.5 minutes, and a temperature of 80°C. Under these conditions, the extraction yield of crude ulvan was 29.28% ± 0.003, significantly higher than the yield obtained using the conventional acidic-hot water method (10.31% ± 0.16%). The statistical model was highly significant ( < 0.0001) with a high regression coefficient (R2 = 0.9811).

Conclusion

The MCAE method proved to be a highly efficient and sustainable approach for extracting ulvan from , offering a significantly increasing yield and reducing extraction time compared to traditional methods.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372378865250603042708
2025-06-16
2025-08-14
Loading full text...

Full text loading...

References

  1. Fan L. Fan W. Mei Y. Liu L. Li L. Wang Z. Yang L. Mechanochemical assisted extraction as a green approach in preparation of bioactive components extraction from natural products - A review. Trends Food Sci. Technol. 2022 129 98 110 10.1016/j.tifs.2022.09.009
    [Google Scholar]
  2. Bao N. Song J. Zhao X. Rashed M.M.A. Zhai K. Dong Z. Mechanochemical-assisted extraction and biological activity research of phenolic compounds from lotus seedpod (Receptaculum Nelumbinis). Molecules 2023 28 24 7947 10.3390/molecules28247947 38138437
    [Google Scholar]
  3. Chithra A. Darshana K. Girishree R. Dharanyshri R. Sekar R. Jacob M.P.K. Methods of Flavonoids Extraction. The Flavonoids. Apple Academic Press 2024 35 58
    [Google Scholar]
  4. Šalić A. Šepić L. Turkalj I. Zelić B. Šamec D. Comparative analysis of enzyme-, ultrasound-, mechanical-, and chemical-assisted extraction of biflavonoids from ginkgo leaves. Processes 2024 12 5 982 10.3390/pr12050982
    [Google Scholar]
  5. Sixt M. Uhlenbrock L. Strube J. Toward a distinct and quantitative validation method for predictive process modelling—On the example of solid-liquid extraction processes of complex plant extracts. Processes 2018 6 6 66 10.3390/pr6060066
    [Google Scholar]
  6. Shi Y. Ma X.R. Jin H.F. Jiao Y.H. Cao J. Ye L.H. Novel organic base-assisted mechanochemical extraction of water-soluble and fat-soluble compounds from medicinal crop. Ind. Crops Prod. 2024 215 118676 10.1016/j.indcrop.2024.118676
    [Google Scholar]
  7. Wu K. Ju T. Deng Y. Xi J. Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology. Trends Food Sci. Technol. 2017 66 166 175 10.1016/j.tifs.2017.06.011
    [Google Scholar]
  8. Arfelis S. Martín-Perales A.I. Nguyen R. Pérez A. Cherubin I. Len C. Malpartida I. Bala A. Fullana-i-Palmer P. Linking mechanochemistry with the green chemistry principles: Review article. Heliyon 2024 10 14 e34655 10.1016/j.heliyon.2024.e34655 39148985
    [Google Scholar]
  9. Nirali M. Shailesh M. Seaweed in marine ecosystem: A review. Int. J. Trend in Sci. Res. Develop. 2023 7 1 426 436
    [Google Scholar]
  10. Handayani S. Widhiono I. Widyartini D.S. Macroalgae diversity and its relationship with environmental conditions in polluted waters of Seribu Islands, Jakarta Bay, Indonesia. Biodiversitas 2023 24 11 10.13057/biodiv/d241151
    [Google Scholar]
  11. Ismail M.M. El Zokm G.M. Miranda Lopez J.M. Nutritional, bioactive compounds content, and antioxidant activity of brown seaweeds from the Red Sea. Front. Nutr. 2023 10 1210934 10.3389/fnut.2023.1210934 37565040
    [Google Scholar]
  12. Jiménez-Escrig A. Gómez-Ordóñez E. Rupérez P. Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J. Appl. Phycol. 2012 24 5 1123 1132 10.1007/s10811‑011‑9742‑8
    [Google Scholar]
  13. Sapatinha M. Oliveira A. Costa S. Pedro S. Gonçalves A. Mendes R. Bandarra N.M. Pires C. Red and brown seaweeds extracts: A source of biologically active compounds. Food Chem. 2022 393 133453 10.1016/j.foodchem.2022.133453 35751208
    [Google Scholar]
  14. Alsufyani T. Metabolite profiling of the chemosphere of the macroalga Ulva (Ulvales, Chlorophyta) and its associated bacteria. Dissertation, Friedrich-Schiller-Universität. 2014
    [Google Scholar]
  15. Postma P.R. Cerezo-Chinarro O. Akkerman R.J. Olivieri G. Wijffels R.H. Brandenburg W.A. Eppink M.H.M. Biorefinery of the macroalgae Ulva lactuca: Extraction of proteins and carbohydrates by mild disintegration. J. Appl. Phycol. 2018 30 2 1281 1293 10.1007/s10811‑017‑1319‑8 29755208
    [Google Scholar]
  16. Teichberg M. Fox S. Olsen Y.S. Valiela I. Martinetto P. Iribarne O. Muto E.Y. Petti M.A. Corbisier T.N. Soto-Jiménez M. Páez-Osuna F. Castro P. Freitas H. Zitelli A. Cardinaletti M. Tagliapietra D. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 2010 16 9 2624 2637 10.1111/j.1365‑2486.2009.02108.x
    [Google Scholar]
  17. Dominguez H. Loret E.P. Ulva lactuca, a source of troubles and potential riches. Mar. Drugs 2019 17 6 357 10.3390/md17060357 31207947
    [Google Scholar]
  18. Putra N.R. Fajriah S. Qomariyah L. Dewi A.S. Rizkiyah D.N. Irianto I. Rusmin D. Melati M. Trisnawati N.W. Darwati I. Arya N.N. Exploring the potential of Ulva Lactuca: Emerging extraction methods, bioactive compounds, and health applications – A perspective review. S. Afr. J. Chem. Eng. 2024 47 1 233 245 10.1016/j.sajce.2023.11.017
    [Google Scholar]
  19. Pappou S. Dardavila M.M. Savvidou M.G. Louli V. Magoulas K. Voutsas E. Extraction of bioactive compounds from Ulva lactuca. Appl. Sci. 2022 12 4 2117 10.3390/app12042117
    [Google Scholar]
  20. Ray B. Lahaye M. Cell-wall polysaccharides from the marine green alga Ulva “rigida” (ulvales, chlorophyta). Extraction and chemical composition. Carbohydr. Res. 1995 274 251 261 10.1016/0008‑6215(95)00138‑J
    [Google Scholar]
  21. Tran T.T.V. Truong H.B. Tran N.H.V. Quach T.M.T. Nguyen T.N. Bui M.L. Yuguchi Y. Thanh T.T.T. Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Nat. Prod. Res. 2018 32 19 2291 2296 10.1080/14786419.2017.1408098 29199449
    [Google Scholar]
  22. Chi Y. Li H. Wang P. Du C. Ye H. Zuo S. Guan H. Wang P. Structural characterization of ulvan extracted from Ulva clathrata assisted by an ulvan lyase. Carbohydr. Polym. 2020 229 115497 10.1016/j.carbpol.2019.115497 31826447
    [Google Scholar]
  23. Alves A. Sousa R.A. Reis R.L. A practical perspective on ulvan extracted from green algae. J. Appl. Phycol. 2013 25 2 407 424 10.1007/s10811‑012‑9875‑4
    [Google Scholar]
  24. Li C. Tang T. Du Y. Jiang L. Yao Z. Ning L. Zhu B. Ulvan and Ulva oligosaccharides: A systematic review of structure, preparation, biological activities and applications. Bioresour. Bioprocess. 2023 10 1 66 10.1186/s40643‑023‑00690‑z 38647949
    [Google Scholar]
  25. Cindana Mo’o F.R. Wilar G. Devkota H.P. Wathoni N. Ulvan, a polysaccharide from macroalga Ulva sp.: A review of chemistry, biological activities and potential for food and biomedical applications. Appl. Sci. 2020 10 16 5488 10.3390/app10165488
    [Google Scholar]
  26. Wang H. Cao Z. Yao L. Feng T. Song S. Sun M. Insights into the edible and biodegradable ulvan-based films and coatings for food packaging. Foods 2023 12 8 1622 10.3390/foods12081622 37107417
    [Google Scholar]
  27. Kidgell J.T. Magnusson M. de Nys R. Glasson C.R.K. Ulvan: A systematic review of extraction, composition and function. Algal Res. 2019 39 101422 10.1016/j.algal.2019.101422
    [Google Scholar]
  28. Agarwal C. Pandey A.K. Remediation and recycling of inorganic acids and their green alternatives for sustainable industrial chemical processes. Environ. Sci. Adv. 2023 2 10 1306 1339 10.1039/D3VA00112A
    [Google Scholar]
  29. Hardiningtyas SD Al Haqqy RI Albarokah N Ramadhan W Pari RF Wakabayashi R Extraction of polysaccharide ulvan from green seaweed Ulva lactuca via hydrated deep eutectic solvents. ChemRxiv 2024 10.26434/chemrxiv‑2024‑dl0cz
    [Google Scholar]
  30. Aleem A.A. The marine algae of Alexandria. Egypt University of Alexandria 1993
    [Google Scholar]
  31. Shen D. Jin T. Wang J. Zhu X. Mechanochemical-assisted extraction of polysaccharides from bamboo leaves and its optimized processing parameters. Food Sci. Technol. 2022 42 e117821
    [Google Scholar]
  32. Myers R.H. Montgomery D.C. Anderson-Cook C.M. Response surface methodology: Process and product optimization using designed experiments. 2016
    [Google Scholar]
  33. White N.M. Balasubramaniam T. Nayak R. Barnett A.G. PLoS One 2022 17 3 e0264360 10.1371/journal.pone.0264360 35263374
    [Google Scholar]
  34. Xie J. Lin Y-S. Shi X-J. Zhu X-Y. Su W-K. Wang P. Mechanochemical-assisted extraction of flavonoids from bamboo (Phyllostachys edulis) leaves. Ind. Crops Prod. 2013 43 276 282
    [Google Scholar]
  35. Zhu X. Chen X. Xie J. Wang P. Su W. Mechanochemical‐assisted extraction and antioxidant activity of polysaccharides from Ganoderma lucidum spores. Int. J. Food Sci. Technol. 2012 47 5 927 932
    [Google Scholar]
  36. Liu X. Li Y. Zeng L. Li X. Chen N. Bai S. He H. Wang Q. Zhang C. A review on mechanochemistry: Approaching advanced energy materials with greener force. Adv. Mater. 2022 34 46 e2108327 35015320
    [Google Scholar]
  37. Yang J. Tong Y. Zhu K. Jiang Y. Yan Y. Chen S. Optimization of mechanochemical‐assisted extraction and decoloration by resins of polysaccharides from petals of Crocus sativus L. J. Food Process. Preserv. 2018 42 1 e13369
    [Google Scholar]
  38. Nandihalli N. Chouhan R.K. Kuchi R. Hlova I.Z. Aspects of spodumene lithium extraction techniques. Sustainability 2024 16 19 8513
    [Google Scholar]
  39. Kotsupalo N. Menzheres L. Ryabtsev A. Boldyrev V. Mechanical activation of α-spodumene for further processing into lithium compounds. Theor. Found. Chem. Eng. 2010 44 503 507 10.1134/S0040579510040251
    [Google Scholar]
  40. Liu Y. Jin L-J. Li X-Y. Xu Y-P. Application of mechanochemical pretreatment to aqueous extraction of isofraxidin from Eleutherococcus senticosus. Ind. Eng. Chem. Res. 2007 46 20 6584 6589 10.1021/ie070346j
    [Google Scholar]
  41. Xie J. Shi L. Zhu X. Wang P. Zhao Y. Su W. Mechanochemical-assisted efficient extraction of rutin from Hibiscus mutabilis L. Innov. Food Sci. Emerg. Technol. 2011 12 2 146 152 10.1016/j.ifset.2010.12.009
    [Google Scholar]
  42. Moorthy A. Govindan S. Janardhanan A. Srinivasan S. Padinjarathil H. Ramani P. Response surface methodology optimization extraction of polysaccharide from Tricholoma lobayense and its biological activities. J. Food Meas. Charact. 2024 18 3 2133 2145 10.1007/s11694‑023‑02295‑8
    [Google Scholar]
  43. Qu Y. Zhang P. Cui J. Ni X. Song K. Shi D. Extraction Optimization, Structure Analysis and Antioxidant Activity of Polysaccharide from Sanghuangporus baumii. Curr. Anal. Chem. 2024 20 4 264 274 10.2174/0115734110289728240214103704
    [Google Scholar]
  44. Mohammed-Ziegler I. Medgyesi I. Increased importance of the documented development stage in process validation. Saudi Pharm. J. 2012 20 3 283 285 10.1016/j.jsps.2011.12.004 23960802
    [Google Scholar]
  45. Tan J. Cui P. Ge S. Cai X. Li Q. Xue H. Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit: Modeling, optimization, purification, and characterization. Ultrason. Sonochem. 2022 84 105966 10.1016/j.ultsonch.2022.105966 35247682
    [Google Scholar]
  46. Luo L. Fan W. Qin J. Guo S. Xiao H. Tang Z. Study on process optimization and antioxidant activity of polysaccharide from Bletilla striata extracted via deep eutectic solvents. Molecules 2023 28 14 5538 10.3390/molecules28145538 37513410
    [Google Scholar]
  47. Chemat F. Abert Vian M. Fabiano-Tixier A.S. Nutrizio M. Režek Jambrak A. Munekata P.E.S. Lorenzo J.M. Barba F.J. Binello A. Cravotto G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020 22 8 2325 2353 10.1039/C9GC03878G
    [Google Scholar]
  48. Binsuwaidan R. El-Masry T.A. El-Sheekh M. Seadawy M.G. Makhlof M.E.M. Aboukhatwa S.M. El-Shitany N.A. Elmorshedy K.E. El-Nagar M.M.F. El-Bouseary M.M. Prospective antiviral effect of Ulva lactuca aqueous extract against COVID-19 infection. Mar. Drugs 2023 22 1 30 10.3390/md22010030 38248655
    [Google Scholar]
  49. Ibrahim M.I.A. Amer M.S. Ibrahim H.A.H. Zaghloul E.H. Considerable production of ulvan from Ulva lactuca with special emphasis on its antimicrobial and anti-fouling properties. Appl. Biochem. Biotechnol. 2022 194 7 3097 3118 10.1007/s12010‑022‑03867‑y 35347670
    [Google Scholar]
  50. Tian H. Yin X. Zeng Q. Zhu L. Chen J. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. Int. J. Biol. Macromol. 2015 79 577 582 10.1016/j.ijbiomac.2015.05.031 26026981
    [Google Scholar]
  51. Robic A. Bertrand D. Sassi J-F. Lerat Y. Lahaye M. Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp.(Ulvales, Chlorophyta) by FT-IR and chemometrics. J. Appl. Phycol. 2009 21 4 451 456 10.1007/s10811‑008‑9390‑9
    [Google Scholar]
  52. Madany M.A. Abdel-Kareem M.S. Al-Oufy A.K. Haroun M. Sheweita S.A. The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. Int. J. Biol. Macromol. 2021 177 401 412 10.1016/j.ijbiomac.2021.02.047 33577821
    [Google Scholar]
  53. Thanh T.T.T. Quach T.M.T. Nguyen T.N. Vu Luong D. Bui M.L. Tran T.T. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. Int. J. Biol. Macromol. 2016 93 Pt A 695 702 10.1016/j.ijbiomac.2016.09.040 27637450
    [Google Scholar]
  54. Figueira T.A. da Silva A.J.R. Enrich-Prast A. Yoneshigue-Valentin Y. de Oliveira V.P. Structural characterization of ulvan polysaccharide from cultivated and collected Ulva fasciata (Chlorophyta). Adv. Biosci. Biotechnol. 2020 11 05 206 216 10.4236/abb.2020.115016
    [Google Scholar]
  55. Lahaye M. Ray B. Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta)--NMR analysis of ulvan oligosaccharides. Carbohydr. Res. 1996 283 161 173 10.1016/0008‑6215(95)00407‑6 8901268
    [Google Scholar]
  56. Lahaye M. NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydr. Res. 1998 314 1-2 1 12 10.1016/s0008‑6215(98)00293‑6 10230036
    [Google Scholar]
  57. Tran V.H.N. Mikkelsen M.D. Truong H.B. Vo H.N.M. Pham T.D. Cao H.T.T. Nguyen T.T. Meyer A.S. Thanh T.T.T. Van T.T.T. Structural characterization and cytotoxic activity evaluation of ulvan polysaccharides extracted from the green algae Ulva papenfussii. Mar. Drugs 2023 21 11 556 10.3390/md21110556 37999380
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372378865250603042708
Loading
/content/journals/cocat/10.2174/0122133372378865250603042708
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test