CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) - Volume 23, Issue 4, 2024
Volume 23, Issue 4, 2024
-
-
Anaesthesia-induced Changes in Genomic Expression Leading to Neurodegeneration
General anaesthetics (GA) have been in continuous clinical use for more than 170 years, with millions of young and elderly populations exposed to GA to relieve perioperative discomfort and carry out invasive examinations. Preclinical studies have shown that neonatal rodents with acute and chronic exposure to GA suffer from memory and learning deficits, likely due to an imbalance between excitatory and inhibitory neurotransmitters, which has been linked to neurodevelopmental disorders. However, the mechanisms behind anaesthesia-induced alterations in late postnatal mice have yet to be established. In this narrative review, we present the current state of knowledge on early life anaesthesia exposure-mediated alterations of genetic expression, focusing on insights gathered on propofol, ketamine, and isoflurane, as well as the relationship between network effects and subsequent biochemical changes that lead to long-term neurocognitive abnormalities. Our review provides strong evidence and a clear picture of anaesthetic agents' pathological events and associated transcriptional changes, which will provide new insights for researchers to elucidate the core ideas and gain an in-depth understanding of molecular and genetic mechanisms. These findings are also helpful in generating more evidence for understanding the exacerbated neuropathology, impaired cognition, and LTP due to acute and chronic exposure to anaesthetics, which will be beneficial for the prevention and treatment of many diseases, such as Alzheimer's disease. Given the many procedures in medical practice that require continuous or multiple exposures to anaesthetics, our review will provide great insight into the possible adverse impact of these substances on the human brain and cognition.
-
-
-
Immunotherapy for Pediatric Gliomas: CAR-T Cells Against B7H3: A Review of the Literature
Background: B7H3 is a co-stimulatory molecule for immune reactions found on the surface of tumor cells in a wide variety of tumors. Preclinical and clinical studies have reported it as a tumor target towards which various immunotherapy modalities could be directed. So far, good results have been obtained in hematological neoplasms; however, a contrasting situation is evident in solid tumors, including those of the CNS, which show high refractoriness to current treatments. The appearance of cellular immunotherapies has transformed oncology due to the reinforcement of the immune response that is compromised in people with cancer. Objective: This article aims to review the literature to describe the advancement in knowledge on B7H3 as a target of CAR-T cells in pediatric gliomas to consider them as an alternative in the treatment of these patients. Results: Although B7H3 is considered a suitable candidate as a target agent for various immunotherapy techniques, there are still limitations in using CAR-T cells to achieve the desired success. Conclusion: Results obtained with CAR-T cells can be further improved by the suggested proposals; therefore, more clinical trials are needed to study this new therapy in children with gliomas.
-
-
-
SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia?
Authors: Narmadhaa Sivagurunathan and Latchoumycandane CalivarathanThe pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
-
-
-
The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
-
-
-
Evaluating the Potential of Light Exposure on Reducing the Frequency of Epileptic Seizures
Epilepsy is one of the most common and devastating neurological disorders that causes unprovoked, recurrent seizures arising from excessive synchronized neuronal discharging. Although antiepileptic drugs (AEDs) reduce the frequency of epilepsy seizures, drug-refractory epileptic patients exert resistance to AEDs, resulting in treatment difficulty. Moreover, pharmacological treatments do not show satisfactory results in response to photosensitive epilepsy. In the recent era, light therapy emerged as a potential non-pharmacological approach for treating various diseases, including depression, seasonal affective disorders, migraine, pain, and others. Several studies have also shown the potential of light therapy in treating epilepsy. In addition, Red light evokes epilepsy seizures. Blue lenses filter the red light and significantly suppress the frequency of epilepsy seizures. However, the effects of green light on the frequency of epileptic seizures are not studied yet. In addition, light-activated gene therapy or optogenetics also emerged as a possible option for epilepsy treatment. Animal models have shown the therapeutic possibilities of optogenetics and light therapy; however, human studies addressing this possibility are still vague. This review provides the beneficial effects of light in reducing seizure frequency in epilepsy patients. A limited number of studies have been reported so far; therefore, light therapy for treating epilepsy requires more studies on animal models to provide precise results of light effects on seizures.
-
-
-
Effect of Apigenin on Neurodegenerative Diseases
Authors: Kajal Gaur and Yasir H. SiddiqueNeurodegenerative diseases (NDDs), such as Alzheimer's and Parkinson's, are the most frequent age-related illnesses affecting millions worldwide. No effective medication for NDDs is known to date and current disease management approaches include neuroprotection strategies with the hope of maintaining and improving the function of neurons. Such strategies will not provide a cure on their own but are likely to delay disease progression by reducing the production of neurotoxic chemicals such as reactive oxygen species (ROS) and related inflammatory chemicals. Natural compounds such as flavonoids that provide neuroprotection via numerous mechanisms have attracted much attention in recent years. This review discusses evidence from different research models and clinical trials on the therapeutic potential of one promising flavonoid, apigenin, and how it can be helpful for NDDs in the future prospects. We have also discussed its chemistry, mechanism of action, and possible benefits in various examples of NDDs.
-
-
-
Rationale and Development of Tavapadon, a D1/D5-Selective Partial Dopamine Agonist for the Treatment of Parkinson’s Disease
Authors: Erwan Bezard, David Gray, Rouba Kozak, Matthew Leoni, Cari Combs and Sridhar DuvvuriCurrently, available therapeutics for the treatment of Parkinson’s disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon’s therapeutic potential for the treatment of early through advanced PD.
-
-
-
Therapeutic Viewpoint on Rat Models of Locomotion Abnormalities and Neurobiological Indicators in Parkinson's Disease
Authors: Rishabh Chaudhary and Randhir SinghBackground: Locomotion problems in Parkinson's syndrome are still a research and treatment difficulty. With the recent introduction of brain stimulation or neuromodulation equipment that is sufficient to monitor activity in the brain using electrodes placed on the scalp, new locomotion investigations in patients having the capacity to move freely have sprung up. Objective: This study aimed to find rat models and locomotion-connected neuronal indicators and use them all over a closed-loop system to enhance the future and present treatment options available for Parkinson’s disease. Methods: Various publications on locomotor abnormalities, Parkinson's disease, animal models, and other topics have been searched using several search engines, such as Google Scholar, Web of Science, Research Gate, and PubMed. Results: Based on the literature, we can conclude that animal models are used for further investigating the locomotion connectivity deficiencies of many biological measuring devices and attempting to address unanswered concerns from clinical and non-clinical research. However, translational validity is required for rat models to contribute to the improvement of upcoming neurostimulation-based medicines. This review discusses the most successful methods for modelling Parkinson’s locomotion in rats. Conclusion: This review article has examined how scientific clinical experiments lead to localised central nervous system injuries in rats, as well as how the associated motor deficits and connection oscillations reflect this. This evolutionary process of therapeutic interventions may help to improve locomotion- based treatment and management of Parkinson's syndrome in the upcoming years.
-
-
-
The Effects and Mechanism of Scutellaria baicalensis Georgi Stems and Leaves Flavonoids on Myelin Sheath Degeneration Induced by Composite Aβ in Rats
Authors: Xu Congcong, Ye Yuanyuan, Li Caixia and Shang YazhenBackground: Alzheimer's disease is a degenerative disease of the central nervous system, and its characteristic pathological changes are closely associated with Aβ deposition and neurofibrillary tangles. Many studies have found that malignant changes in the myelin sheath and oligodendrocyte (OL) are accompanied by the occurrence and development of AD. Therefore, any method that can resist myelin sheath and OL disorders may be a potential strategy for AD. Objective: To investigate the effects and mechanism of Scutellaria baicalensis Georgi stem and leaf flavonoids (SSFs) on the myelin sheath degeneration induced by Aβ25-35 combined with AlC13 and RHTGF-β1 (composite Aβ) in rats. Methods: A rat AD model was established by intracerebroventricular injection of composite Aβ. The Morris water maze was used to screen the memory impairment rat model. The successful model rats were divided into the model group and the 35, 70, and 140 mg/kg SSFS groups. The myelin sheath changes in the cerebral cortex were observed with an electron microscope. The expression of the oligodendrocyte- specific protein claudin 11 was detected with immunohistochemistry. The protein expression levels of myelin oligodendrocyte glycoprotein (MOG), myelin-associated glycoprotein (MAG) and myelin basic protein (MBP), sphingomyelin synthase-1 (SMS1), and sphingomyelinase-2 (SMPD2) were assayed by Western blotting. Results: The intracerebroventricular injection of composite Aβ caused degeneration of the myelin sheath structure and was accompanied by the decreased claudin 11, MOG, MAG, MBP, and SMS1, and increased SMPD2 protein expression in the cerebral cortex. However, 35, 70, and 140 mg/kg SSFs can differentially ameliorate the above abnormal changes induced by composite Aβ. Conclusion: SSFs can alleviate myelin sheath degeneration and increase the protein expression of claudin 11, MOG, MAG, and MBP, and the effective mechanism may be related to the positive regulation of SMS1 and SMPD2 activities.
-
-
-
Alpha Calcitonin Gene-related Peptide, Neuropeptide Y, and Substance P as Biomarkers for Diagnosis and Disease Activity and Severity in Multiple Sclerosis
Background: Alpha calcitonin gene-related peptide (aCGRP), neuropeptide Y (NPY), and substance P (SP) are neuropeptides that have emerged recently as potent immunomodulatory factors with potential as novel biomarkers and therapeutic targets in multiple sclerosis (MS). Objective: The study aimed to detect serum levels of aCGRP, NPY, and SP in MS patients versus healthy controls and their association with disease activity and severity. Methods: Serum levels were measured in MS patients and age and sex-matched healthy controls using ELISA. Results: We included 67 MS patients: 61 relapsing-remitting MS (RR-MS) and 6 progressive MS (PR-MS), and 67 healthy controls. Serum NPY level was found to be lower in MS patients than in healthy controls (p < 0.001). Serum aCGRP level was higher in PR-MS compared to RR-MS (p = 0.007) and healthy controls (p = 0.001), and it positively correlated with EDSS (r = 0.270, p = 0.028). Serum NPY level was significantly higher in RR-MS and PR-MS than in healthy controls (p < 0.001 and p = 0.001, respectively), and it was lower in patients with mild or moderate/severe disease than in healthy controls (p < 0.001). Significant inverse correlations were found between SP level and MS disease duration (r = -0.279, p = 0.022) and duration of current DMT (r = -0.315, p = 0.042). Conclusion: Lower serum levels of NPY were revealed in MS patients compared to healthy controls. Since serum levels of aCGRP are significantly associated with disease activity and severity, it is a potential disease progression marker.
-
-
-
Role of Lipocalin-2 in N1/N2 Neutrophil Polarization After Stroke
Authors: Zhiliang Guo, Guoli Xu, Jiaping Xu, Yaqian Huang, Chunfeng Liu and Yongjun CaoBackground: Neutrophils and Lipocalin-2 (LCN2) play pivotal roles in cerebral ischemiareperfusion (I/R) injury. However, their contribution is not fully clarified. Objective: This study aimed to explore the role of LCN2 and its association with neutrophil polarization in I/R injury. Methods: A mouse model of middle cerebral artery occlusion (MCAO) was used to induce cerebral ischemia. LCN2mAb was administered 1 h and Anti-Ly6G was administered for 3d before MCAO. The role of LCN2 in the polarity transition of neutrophils was explored using an in vitro HL-60 cell model. Results: LCN2mAb pretreatment had neuroprotective effects in mice. The expression of Ly6G was not significantly different, but the expression of N2 neutrophils was increased. In the in vitro study, LCN2mAb-treated N1-HL-60 cells induced N2-HL-60 polarization. Conclusion: LCN2 may affect the prognosis of ischemic stroke by mediating neutrophil polarization.
-
-
-
Bumetanide, a Diuretic That Can Help Children with Autism Spectrum Disorder
Authors: Esraa Shaker, Osama E. Agami and Abeer SalamahBackground: Autism Spectrum Disorder (ASD) is a common child neurodevelopmental disorder, whose pathogenesis is not completely understood. Until now, there is no proven treatment for the core symptoms of ASD. However, some evidence indicates a crucial link between this disorder and GABAergic signals which are altered in ASD. Bumetanide is a diuretic that reduces chloride, shifts gamma-amino-butyric acid (GABA) from excitation to inhibition, and may play a significant role in the treatment of ASD. Objective: The objective of this study is to assess the safety and efficacy of bumetanide as a treatment for ASD. Methods: Eighty children, aged 3-12 years, with ASD diagnosed by Childhood Autism Rating Scale (CARS), 30 were included in this double-blind, randomized, and controlled study. Group 1 received Bumetanide, Group 2 received a placebo for 6 months. Follow-up by CARS rating scale was performed before and after 1, 3, and 6 months of treatment. Results: The use of bumetanide in group 1 improved the core symptoms of ASD in a shorter time with minimal and tolerable adverse effects. There was a statistically significant decrease in CARS and most of its fifteen items in group 1 versus group 2 after 6 months of treatment (p-value <0.001). Conclusion: Bumetanide has an important role in the treatment of core symptoms of ASD.
-
Volumes & issues
-
Volume 24 (2025)
-
Volume 23 (2024)
-
Volume 22 (2023)
-
Volume 21 (2022)
-
Volume 20 (2021)
-
Volume 19 (2020)
-
Volume 18 (2019)
-
Volume 17 (2018)
-
Volume 16 (2017)
-
Volume 15 (2016)
-
Volume 14 (2015)
-
Volume 13 (2014)
-
Volume 12 (2013)
-
Volume 11 (2012)
-
Volume 10 (2011)
-
Volume 9 (2010)
-
Volume 8 (2009)
-
Volume 7 (2008)
-
Volume 6 (2007)
-
Volume 5 (2006)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
A Retrospective, Multi-Center Cohort Study Evaluating the Severity- Related Effects of Cerebrolysin Treatment on Clinical Outcomes in Traumatic Brain Injury
Authors: Dafin F. Muresanu, Alexandru V. Ciurea, Radu M. Gorgan, Eva Gheorghita, Stefan I. Florian, Horatiu Stan, Alin Blaga, Nicolai Ianovici, Stefan M. Iencean, Dana Turliuc, Horia B. Davidescu, Cornel Mihalache, Felix M. Brehar, Anca . S. Mihaescu, Dinu C. Mardare, Aurelian Anghelescu, Carmen Chiparus, Magdalena Lapadat, Viorel Pruna, Dumitru Mohan, Constantin Costea, Daniel Costea, Claudiu Palade, Narcisa Bucur, Jesus Figueroa and Anton Alvarez
-
-
-
- More Less