CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) - Volume 18, Issue 10, 2019
Volume 18, Issue 10, 2019
-
-
Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders
Authors: Neha M. Chitre, Nader H. Moniri and Kevin S. MurnaneNeurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
-
-
-
Pharmacotherapy of Down’s Syndrome: When and Which?
Authors: Seyed K. Tayebati, Alessandro Cecchi, Ilenia Martinelli, Elisa Carboni and Francesco AmentaDown Syndrome (DS) is an essential genetic disease that involves many other body systems along with cerebral functions. The postnatal approach to treat this genetic disease includes intervention on various related disorders (e.g., heart failure, respiratory, oral, ear, and hearing disorders). However, different proposed treatments do not significantly improve the quality of life of these subjects. Another approach to the treatment of DS considering the possibility to intervene on the embryo was recently introduced. As of this, the current study has reviewed different outcomes regarding DS treatment in an animal model, namely the Ts65Dn mouse. The obtained results encouraged spending more time, efforts, and resources in this field. Besides, various treatment strategies were tried to include genetic modification, treatment with vasoactive intestinal peptide derivatives or fluoxetine. However, the main obstacle to the use of these possible treatments is the ethical issues it raises. The progression of the pregnancy in spite of awareness that DS affects the unborn and prenatal treatment of DS injured embryo are relevant dilemmas. Thus, talented researchers should spend more efforts to improve the quality of life for people affected by DS, which will allow probably a better approach to the ethical issues.
-
-
-
Neurobehavioral Consequences Associated with Long Term Tramadol Utilization and Pathological Mechanisms
Authors: Khadga Raj, Pooja Chawla and Shamsher SinghTramadol is a synthetic analog of codeine used to treat pain of moderate to severe intensity and is reported to have neurotoxic potential. At therapeutic dose, tramadol does not cause major side effects in comparison to other opioid analgesics, and is useful for the management of neurological problems like anxiety and depression. Long term utilization of tramadol is associated with various neurological disorders like seizures, serotonin syndrome, Alzheimer’s disease and Parkinson’s disease. Tramadol produces seizures through inhibition of nitric oxide, serotonin reuptake and inhibitory effects on GABA receptors. Extensive tramadol intake alters redox balance through elevating lipid peroxidation and free radical leading to neurotoxicity and produces neurobehavioral deficits. During Alzheimer’s disease progression, low level of intracellular signalling molecules like cGMP, cAMP, PKC and PKA affect both learning and memory. Pharmacologically tramadol produces actions similar to Selective Serotonin Reuptake Inhibitors (SSRIs), increasing the concentration of serotonin, which causes serotonin syndrome. In addition, tramadol also inhibits GABAA receptors in the CNS has been evidenced to interfere with dopamine synthesis and release, responsible for motor symptoms. The reduced level of dopamine may produce bradykinesia and tremors which are chief motor abnormalities in Parkinson’s Disease (PD).
-
-
-
A Review for Lithium: Pharmacokinetics, Drug Design, and Toxicity
Authors: Jinhua Wen, Darrell Sawmiller, Brendan Wheeldon and Jun TanLithium as a mood stabilizer has been used as the standard pharmacological treatment for Bipolar Disorder (BD) for more than 60 years. Recent studies have also shown that it has the potential for the treatment of many other neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Huntington’s disease, through its neurotrophic, neuroprotective, antioxidant and anti-inflammatory actions. Therefore, exploring its pharmacokinetic features and designing better lithium preparations are becoming important research topics. We reviewed many studies on the pharmacokinetics, drug design and toxicity of lithium based on recent relevant research from PubMed, Web of Science, Elsevier and Springer databases. Keywords used for searching references were lithium, pharmacology, pharmacokinetics, drug design and toxicity. Lithium is rapidly and completely absorbed from the gastrointestinal tract after oral administration. Its level is initially highest in serum and then is evidently redistributed to various tissue compartments. It is not metabolized and over 95% of lithium is excreted unchanged through the kidney, but different lithium preparations may have different pharmacokinetic features. Lithium has a narrow therapeutic window limited by various adverse effects, but some novel drugs of lithium may overcome these problems. Various formulations of lithium have the potential for treating neurodegenerative brain diseases but further study on their pharmacokinetics will be required in order to determine the optimal formulation, dosage and route of administration.
-
-
-
Structurally Related Edaravone Analogues: Synthesis, Antiradical, Antioxidant, and Copper-Chelating Properties
Authors: Alexandre LeBlanc, Miroslava Cuperlovic-Culf, Pier Jr. Morin and Mohamed TouaibiaBackground: The current therapeutic options available to patients diagnosed with Amyotrophic Lateral Sclerosis (ALS) are limited and edaravone is a compound that has gained significant interest for its therapeutic potential in this condition. Objectives: The current work was thus undertaken to synthesize and characterize a series of edaravone analogues. Methods: A total of 17 analogues were synthesized and characterized for their antioxidant properties, radical scavenging potential and copper-chelating capabilities. Results: Radical scavenging and copper-chelating properties were notably observed for edaravone. Analogues bearing hydrogen in position 1 and a phenyl at position 3 and a phenyl in both positions of pyrazol-5 (4H)-one displayed substantial radical scavenging, antioxidants and copper-chelating properties. High accessibility of electronegative groups combined with higher electronegativity and partial charge of the carbonyl moiety in edaravone might explain the observed difference in the activity of edaravone relative to the closely related analogues 6 and 7 bearing hydrogen at position 1 and a phenyl at position 3 (6) and a phenyl in both positions (7). Conclusion: Overall, this study reveals a subset of edaravone analogues with interesting properties. Further investigation of these compounds is foreseen in relevant models of oxidative stress-associated diseases in order to assess their therapeutic potential in such conditions.
-
-
-
Somatostatin Type 2 Receptor Antibody Enhances Mechanical Hyperalgesia in the Dorsal Root Ganglion Neurons after Sciatic Nerve-pinch Injury: Evidence of Behavioral Studies and Bax Protein Expression
Authors: Qiong Xiang, Jing-Jing Li, Chun-Yan Li, Rong-Bo Tian and Xian-Hui LiBackground: Our previous study has indicated that somatostatin potently inhibits neuropathic pain through the activation of its type 2 receptor (SSTR2) in mouse dorsal root ganglion and spinal cord. However, the underlying mechanism of this activation has not been elucidated clearly. Objective: The aim of this study is to perform the pharmacological studies on the basis of sciatic nerve-pinch mice model and explore the underlying mechanism involving SSTR2. Methods: On the basis of a sciatic nerve-pinch injury model, we aimed at comparing the painful behavior and dorsal root ganglion neurons neurochemical changes after the SSTR2 antibody (anti- SSTR2;5μl,1μg/ml) administration in the mouse. Results: After pinch nerve injury, we found that the mechanical hyperalgesia and severely painful behavior (autotomy) were detected after the application of SSTR2 antibody (anti-SSTR2; 5μl, 1μg/ml) on the pinch-injured nerve. The up-regulated phosphorylated ERK (p-ERK) expression and the apoptotic marker (i.e., Bax) were significantly decreased in DRGs after anti-SSTR2 treatment. Conclusion: The current data suggested that inhibitory changes in proteins from the apoptotic pathway in anti-SSTR2-treated groups might be taking place to overcome the protein deficits caused by SSTR2 antibody and supported the new therapeutic intervention with SSTR2 antagonist for neuronal degeneration following nerve injury.
-
-
-
Synthesis and Evaluation of N-substituted (Z)-5-(Benzo[d][1,3]dioxol-5-ylmethylene)-2-Thioxothiazolidin-4-one Derivatives and 5-Substituted-Thioxothiazolidindione Derivatives as Potent Anticonvulsant Agents
Authors: Shiyang Dong, Yanhua Liu, Jun Xu, Yue Hu, Limin Huang and Zengtao WangBackground: Epilepsy is a serious and common neurological disorder threatening the health of humans. Despite enormous progress in epileptic research, the anti-epileptic drugs present many limitations. These limitations prompted the development of more safer and effective AEDs. Methods: A series of N-substituted (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)- 2-thioxothiazolidin-4- one derivatives and 5-substituted-thioxothiazolidindione derivatives were designed, synthesized and tested for anticonvulsant activity against maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ). Neurotoxicity was determined by the rotarod test. Results: Among them, the most potent 4e displayed high protection against MES-induced seizures with an ED50 value of 9.7 mg/kg and TD50 value of 263.3 mg/kg, which provided 4e with a high protective index (TD50/ED50) of 27.1 comparable to reference antiepileptic drugs. 4e clearly inhibits the NaV1.1 channel in vitro. The molecular docking study was conducted to exploit the results. Conclusion: Stiripentol is a good lead compound for further structural modification. Compound 4e was synthesized, which displayed remarkable anticonvulsant activities, and the NaV1.1 channel inhibition was involved in the mechanism of action of 4e.
-
Volumes & issues
-
Volume 24 (2025)
-
Volume 23 (2024)
-
Volume 22 (2023)
-
Volume 21 (2022)
-
Volume 20 (2021)
-
Volume 19 (2020)
-
Volume 18 (2019)
-
Volume 17 (2018)
-
Volume 16 (2017)
-
Volume 15 (2016)
-
Volume 14 (2015)
-
Volume 13 (2014)
-
Volume 12 (2013)
-
Volume 11 (2012)
-
Volume 10 (2011)
-
Volume 9 (2010)
-
Volume 8 (2009)
-
Volume 7 (2008)
-
Volume 6 (2007)
-
Volume 5 (2006)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
A Retrospective, Multi-Center Cohort Study Evaluating the Severity- Related Effects of Cerebrolysin Treatment on Clinical Outcomes in Traumatic Brain Injury
Authors: Dafin F. Muresanu, Alexandru V. Ciurea, Radu M. Gorgan, Eva Gheorghita, Stefan I. Florian, Horatiu Stan, Alin Blaga, Nicolai Ianovici, Stefan M. Iencean, Dana Turliuc, Horia B. Davidescu, Cornel Mihalache, Felix M. Brehar, Anca . S. Mihaescu, Dinu C. Mardare, Aurelian Anghelescu, Carmen Chiparus, Magdalena Lapadat, Viorel Pruna, Dumitru Mohan, Constantin Costea, Daniel Costea, Claudiu Palade, Narcisa Bucur, Jesus Figueroa and Anton Alvarez
-
-
-
- More Less