CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) - Volume 15, Issue 8, 2016
Volume 15, Issue 8, 2016
-
-
Neural Stem Cell Transplantation and CNS Diseases
Authors: Rodolfo Gonzalez, Milton H. Hamblin and Jean-Pyo LeeIn neurological disorders, pathological lesions in the central nervous system (CNS) may be globally dispersed throughout the brain or localized to specific regions. Although native neural stem cells (NSCs) are present in the adult mammalian brain, intrinsic self-repair of injured adult CNS tissue is inadequate or ineffective. The brain's poor regenerative ability may be due to the fact that NSCs are restricted to discrete locations, are few in number, or are surrounded by a microenvironment that does not support neuronal differentiation. Therapeutic potential of NSC transplantation in CNS diseases characterized by global degeneration requires that gene products and/or replaced cells be widely distributed. Global degenerative CNS diseases include inherited pediatric neurodegenerative diseases (inborn errors of metabolism, including lysosomal storage disorders (LSDs), such as Tay-Sachs-related Sandhoff disease), hypoxic or ischemic encephalopathy, and some adult CNS diseases (such as multiple sclerosis). Both mouse and human NSCs express many chemokines and chemokine receptors (including CXCR4 and adhesion molecules, such as integrins, selectins, and immunoglobulins) that mediate homing to sources of inflammatory chemokines, such as SDF-1α. In mammalian brains of all ages, NSCs may be attracted even at a great distance to regions of neurodegeneration. Consequently, NSC transplantation presents a promising strategy for treating many CNS diseases.
-
-
-
Dysregulation of RNA Mediated Gene Expression in Motor Neuron Diseases
Authors: Inês do Carmo G. Gonçalves, Wiebke A. Rehorst and Min Jeong KyeRecent findings indicate an important role for RNA-mediated gene expression in motor neuron diseases, including ALS (amyotrophic lateral sclerosis) and SMA (spinal muscular atrophy). ALS, also known as Lou Gehrig’s disease, is an adult-onset progressive neurodegenerative disorder, whereby SMA or “children’s Lou Gehrig’s disease” is considered a pediatric neurodevelopmental disorder. Despite the difference in genetic causes, both ALS and SMA share common phenotypes; dysfunction/loss of motor neurons that eventually leads to muscle weakness and atrophy. With advanced techniques in molecular genetics and cell biology, current data suggest that these two distinct motor neuron diseases share more than phenotypes; ALS and SMA have similar cellular pathological mechanisms including mitochondrial dysfunction, oxidative stress and dysregulation in RNA-mediated gene expression. Here, we will discuss the current findings on these two diseases with specific focus on RNA-mediated gene regulation including miRNA expression, pre-mRNA processing and RNA binding proteins.
-
-
-
Hypothalamic AMP-activated Protein Kinase as a Regulator of Food Intake and Energy Balance
Authors: Tae Seok Oh, Yoonjeong Jeon, Seolsong Kim and Eun-Kyoung KimThe maintenance of appetite at proper levels, depending on the energy status, is important; otherwise abnormal appetite may cause a series of disorders, such as anorexia, hyperphagia, obesity, and its complications (diabetes mellitus, hypertension, cardiovascular disease, and fatty liver disease). Hypothalamic AMPactivated protein kinase (AMPK) integrates diverse hormonal and nutritional signals to regulate food intake and energy metabolism. Recent evidence suggests that different hormones, nutrients and synthetic chemicals can modulate AMPK activity in the hypothalamus, thereby regulating food intake and body weight, through neuropeptide expressions. In order to elucidate the mechanisms that control hypothalamic AMPK activity, a variety of studies have focused on finding upstream and downstream modulators of hypothalamic AMPK for the regulation of food intake and energy balance. This review highlights the current evidence for understanding how hypothalamic AMPK regulates food intake and energy balance, and will help in the development of effective interventions for the treatment of food intake-related disorders. In the future, it is hoped that new pharmaceutical developments targeting hypothalamic AMPK, in combination with careful clinical trials, will lead to improved and effective therapeutic strategies for complications caused by abnormal appetite and energy balance.
-
-
-
S100A9 Exacerbates the Aβ1-42-mediated Innate Immunity in Human THP-1 Monocytes
Authors: Kyoung A. Jhang, Eun Ok Lee, Hee-Sun Kim, Keun-A Chang, Yoo-Hun Suh and Young Hae ChongThe S100A9 protein is an important proinflammatory factor of innate immunity that has been proposed to participate in inflammation associated with the pathogenesis of Alzheimer’s disease. Here, we provide insights into the potential roles of extracellular S100A9 in the interaction with the immune response in human THP-1 monocytic cells that have been challenged with amyloid β1-42 (Aβ1-42) monomers instead of oligomers. Extracellular S100A9 alone produced a stimulatory effect on tumor necrosis factor-α and interleukin-1β, expression as well as released monocyte chemoattractant protein-1 into culture supernatants, which was accompanied by an increased level of matrix metalloproteinas-9 activity. Importantly, co-stimulation with S100A9 and Aβ1-42 resulted in a marked enhancement of Aβ1-42-mediated release of these proinflammatory mediators under the same experimental conditions, whereas heat inactivated S100A9 had little effect. Our findings clearly suggest that excess S100A9 protein may play an important role in the pathological processes of Alzheimer’s disease by exacerbating the Aβ1-42-induced innate immune response.
-
-
-
Soluble Neuregulin-1 from Microglia Enhances Amyloid Beta-induced Neuronal Death
Authors: Hyunjeong Liew, Yun-Mi Kim, Hee Soon Choi, Ah Ram Jang, David Churchill, Sang Hyung Lee and Yoo-Hun SuhNeuregulin-1 (NRG-1) is a ligand of the epidermal growth factor receptor (erbB), and its interaction involves activation of the glutamatergic N-methyl-Daspartate receptor, which increases the expression of the β2 subunit of the γ- aminobutyric acid receptor and subunits of the nicotinic acetylcholine receptor. In the dentate gyrus of 14-month-old Tg2576 mice, NRG-1 was strongly expressed compared with age-matched controls. The supernatant of oligomeric amyloid β peptide (Aβ42)-treated glial cells enhanced the Aβ42-induced cytotoxic effects, but the expression of Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand in microglial cells was not changed upon cytotoxic treatment. This suggests that the oligomeric form of Aβ42 toxicity is not related to apoptosis, which is mediated by cell-to-cell interaction. During the 24-h incubation, the secretion of the soluble form of NRG-1 was increased, but interleukin 6 secretion was not changed. Further, soluble NRG-1 increased Aβ42-induced toxicity. In conclusion, soluble NRG-1 significantly enhanced oligomeric Aβ42-induced toxicity through the activation of endoplasmic reticulum stress by the increase of a phospho-translation initiation factor 2 alpha (p-eIF2α).
-
-
-
Neuroprotective Effects of an Erythropoietin-Derived Peptide in PC1 2 Cells under Oxidative Stress
Authors: Seung-Jun Yoo, Bongki Cho, Chanil Moon, Seong-Woon Yu and Cheil MoonErythropoietin (EPO) has been shown to be a key cytokine in the production of erythrocytes from erythroblasts. Recently, attempts have been made to adopt EPO as a drug target for neuroprotection in selected neurological pathologies. In the current study, a novel EPO-derived peptide which mimics the weak binding site of EPO to its receptor (MK-X) was generated. Experimental results demonstrated that MK-X was able to ameliorate neuronal death due to reactive oxygen species and conditions of oxidative stress similar to EPO. In addition, MK-X induced long-lasting Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Akt activation. Furthermore, treatment with inhibitors of ERK1/2 and Akt abolished the neuroprotective effect of MK-X. Unlike EPO, however, MK-X did not induce cellular proliferation. Collectively, the results of the current study suggested that MK-X may be useful as a novel neuroprotective reagent.
-
-
-
Dehydroevodiamine•HCl Protects Against Memory Impairment and Cerebral Amyloid-β Production in Tg2576 Mice by Acting as a β-Secretase Inhibitor
We previously demonstrated that dehydroevodiamine•HCl (DHED), which was purified from Evodia rutaecarpa Bentham (Rutaceae), has beneficial effects on memory impairment and neuronal damage in three disease models. To investigate the preventive action of DHED in Alzheimer’s disease (AD), a progressive neurodegenerative disorder characterized by memory decline, amyloid-β (Aβ) protein-containing neuritic plaques and neurofibrillary tangles, in this study, we proposed that DHED may be therapeutically effective against the memory impairment and disease-related neurochemical changes that occur in Tg2576 (Tg) mice. DHED (0.5 mg/kg) was intraperitoneally administered to 7-month-old Tg and wild type mice for 4 months. In passive avoidance and water maze tests, DHED improved memory impairment of Tg mice after 4 months of administration. DHED also reduced cortical levels of soluble Aβ40, soluble Aβ42 and total Aβ peptides in the Tg mice. Additionally, we investigated whether DHED may be a β-secretase inhibitor that affects the production of Aβ related to the formation of neuritic plaques. DHED directly inhibited β-secretase activity in a concentrationdependent manner. The concentration required for 50 % enzyme inhibition (IC50) was 40.96 μM, and DHED may act as a competitive inhibitor of β-secretase. Moreover, DHED interacted strongly with BACE1 (β-secretase 2QP8), as demonstrated in the analysis of the binding mode of DHED in the active site of human BACE1. In conclusion, DHED may exhibit therapeutic effects for AD as a β-secretase inhibitor.
-
-
-
Anticancer Mammalian Target of Rapamycin (mTOR) Signaling Pathway Inhibitors: Current Status, Challenges and Future Prospects in Management of Epilepsy
Authors: Arindam Ghosh Mazumder, Yogendra Shantaram Padwad and Damanpreet SinghThe role of phosphatidylinositol 3-kinase linked mammalian target of rapamycin (mTOR) pathway hyperactivation is well established in cancer pathogenesis. Several molecules inhibiting mTOR pathway, leading to inhibition of protein synthesis responsible for angiogenesis of tumor cells have emerged out to be potential anticancers. Similar hyperactivation of mTOR pathway has also reported in epilepsy during latent phase, following precipitating injury causing reorganization of neuronal networks and ultimately leading to induction of seizures. The mTOR inhibitors have also found to attenuate pathological changes in the brain associated with epilepsy, primarily suppression of mossy fiber sprouting. At the same time, a few antiepileptic molecules which have been studied against cancer showed anticancer activity, apart from their principal mechanism of action. These studies suggest mTOR signaling pathway to be a common pathogenic link between cancer and epilepsy. It has been found that, anticancer molecules acting on different molecular targets, that ultimately down regulate the expression of mTOR, can also be used in case of epilepsy to reduce its hyperactivation. There are several unexplored anticancer molecules that act by inhibiting mTOR directly or indirectly available which can be explored as antiepileptic in future. Majority of the molecules which are tested as anticancer do not reach the final phases of clinical trials due to less potency and efficacy, and ultimately a few of them reach the market. Since a lot of experimental/safety studies have already been conducted on such molecules, hence it is worthwhile to test these molecules for other disorders that share common pathogenic pathway like epilepsy, provided their pitfalls have been addressed, as proposed in the present review.
-
-
-
Functions of Ghrelin in Brain, Gut and Liver
Authors: Cristina Stasi and Stefano MilaniGhrelin production occurs in the gastrointestinal tract with the greatest concentration in the fundus of the stomach, which accounts for approximately 75- 80% of circulating ghrelin levels. Desacyl ghrelin has been suggested to be involved in the regulation of energy homeostasis because of its ability to cross the blood-brain barrier and to induce increased neuronal activity in the hypothalamic arcuate nucleus. The enzyme called ghrelin O-acyl transferase is able to acylate ghrelin and regulates the physiological functions of the final peptide acyl ghrelin. The acylated ghrelin has an anti-inflammatory function that depends on its direct effect on T lymphocytes and monocytes, in which it inhibits the expression of proinflammatory cytokines such as Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Tumor Necrosis Factor (TNF-α). Some studies conducted in animal models show that ghrelin treatment reduces the amount of fibrogenic cells. In particular, ghrelin treatment decreases α -SMA protein expression, hepatic content of hydroxyproline and reduces the elevation of serum aspartate aminotransferase levels. Moreover, ghrelin attenuates liver injury and collagen deposition through inhibition of hepatic cell apoptosis and antioxidative activity, at least in part by nitric oxide induction. Several studies suggest that the orexigenic action of ghrelin is mediated via the neuropeptide Y neurons in the arcuate nucleus. Neuropeptide Y overexpression in the dorsomedial hypothalamus can cause hyperphagia and obesity in rat, which in turn causes liver steatosis, inflammation and fibrosis. The aims of this review were to examine and discuss the different functions of this hormone, particularly those that link the brain, gut and liver.
-
-
-
Neuroprotective Effects of Quercetin: From Chemistry to Medicine
Neurodegenerative diseases are the leading cause of disability in the elderly. Growing evidence suggests that oxidative stress, which is associated with aging, is the basis of most neurodegenerative disorders; and polyphenols, acting as antioxidant agents, reduce the risk of neurodegenerative diseases. Quercetin is a flavonoid occurring in many plant foods commonly consumed as part of a regular diet. It shows a number of biological properties connected to its antioxidant activity. This review assesses the molecular structure of quercetin, its food sources and bioavailability. Moreover, the main results obtained from in vitro studies, observing the mechanisms of action through which quercetin exerts its antioxidant activity, are reported. However, most of these effects have only been observed in vitro and clinical studies are lacking.
-
-
-
Role of Methylene Blue in Trauma Neuroprotection and Neuropsychiatric Diseases
The prevalence of central nervous system trauma, neurodegenerative and psychiatric diseases has significantly increased in recent years. Most of these diseases show multifactorial causes and several progression mechanisms. The search for a medication which positively interferes in these mechanisms and thereby changes the course of these diseases is of great scientific interest. The aim of the present review is to assess current literature on the possible role of methylene blue (MB) in the central nervous system due to the increasing number of citations in spite of the few articles available on the subject which suggest growing interest in the protective effects of MB on the central nervous system. Searches were performed on PubMed and Thomson Reuters Web of Knowledge. Therefore, we provide an overview of existing articles concerning: 1) MB actions; 2) MB neuroprotection and cardiac arrest; 3) MB neuroprotection and degenerative brain diseases; 4) MB neuroprotection and psychiatric diseases. PubMed was chosen because it holds the highest number of articles on the subject, Thomson Reuters was chosen due to its functionality which evaluates citations through analytic graphs. We conclude that MB has a beneficial effect and acts through many mechanisms and pathways of the central nervous system, being a potential alternative for the treatment of many neurodegenerative and psychiatric diseases.
-
-
-
Chalcone Derivatives Activate and Desensitize the Transient Receptor Potential Ankyrin 1 Cation Channel, Subfamily A, Member 1 TRPA1 Ion Channel: Structure-Activity Relationships in vitro and Anti-Nociceptive and Anti-inflammatory Activity in vivo
Eleven compounds belonging to the chalcone family were tested for their ability to activate and subsequently desensitize the rat transient receptor potential ankyrin 1 cation channel, subfamily A, member 1 (TRPA1) in a heterologous expression system. Four of the tested compounds were more potent than the TRPA1 agonist mustard oil, and showed also a strong desensitizing effect. Some chalcone compounds were not pungent in the eye-wiping assay and quite remarkably inhibited in a long-lasting and dose-dependent manner the pain response in the formalin test. Chalcones can be considered as novel candidates for the development of antihyperalgesic preparations based on TRPA1 desensitization.
-
-
-
Neuroinflammatory Markers in Spontaneously Hypertensive Rat Brain: An Immunohistochemical Study
Authors: Seyed K. Tayebati, Daniele Tomassoni and Francesco AmentaBackground: Spontaneously hypertensive rats (SHR) represent a model of hypertension and vascular injury. In the past decade, SHR were also considered as a model of vascular dementia. Several studies have shown that cerebrovascular changes in SHR may mimic brain vascular diseases of hypertensive individuals. Vascular and cerebrovascular changes during hypertension are often linked to inflammatory processes. Inflammation frequently affects vascular endothelium, perivascular astrocytes that form blood brain barrier. This inflammatory reaction may lead to neuro-inflammation with consequent damage of brain tissue. A significant brain atrophy, a reduction of white matter volumes, and BBB dysfunction were found in SHR. Micro- and macrogliosis in deep cortical regions were also observed. Based on these findings, this study was designed to define neuroinflammation entity in SHR, using immunohistochemistry technique for different inflammatory markers. Methods: Thirty-two-week-old SHR and age-matched Wistar Kyoto rats were used. Brain was processed for immunohistochemistry. Astrogliosis markers for astrocytes (glial fibrillary acidic protein) and microglia (isolectin IB4) were used. The pro-inflammatory interleukins (IL-1b, IL-6) and tumor necrosis factor alpha (TNFa) expression were also evaluated. Results: In SHR brain, an obvious glial reaction was found both for GFAP-immunoreactive astrocytes and for microglia. The pro-inflammatory IL-1b was significantly increased in CA1 sub-field of SHR hippocampus. The TNFa expression was higher in frontal cortex of SHR compared to WKY. Conclusion: The above neuromorphological evidences indicate that SHR are predictive animal models for vascular brain disorders and neuroinflammation. Furthermore, this model may be useful to evaluate anti-inflammatory and neuroprotective effects of different molecules.
-
-
-
Glycyrrhizic Acid Ameliorates Cognitive Impairment in a Rat Model of Vascular Dementia Associated with Oxidative Damage and Inhibition of Voltage-Gated Sodium Channels
Authors: Jie Guo, Chunxiao Yang, Jiajia Yang and Yang YaoVascular dementia (VD) is the second most common cause of cognitive impairment in the elderly population. Our study aims to investigate the neuroprotective effects of glycyrrhizic acid (GA), a major active constituent of Glycyrrhiza glabra root, in a VD rat model induced by permanent occlusion of the bilateral common carotid arteries. Spatial cognitive function was examined by the Morris water maze test and synaptic plasticity was explored by assessing long-term potentiation. The results showed that GA (20 mg/kg for 5 days) significantly improved the performance of learning and memory of VD rats in the Morris water maze test and attenuated induction of long-term potentiation. Histopathological studies showed that GA significantly attenuated cell damage in VD rats. Malondialdehyde levels and superoxide dismutase activity were analyzed in the hippocampus and cortex to investigate anti-oxidant status. The results showed that GA decreased the level of lipid peroxidation and increased the activity of superoxide dismutase in VD rats. Lastly, whole-cell patch-clamp analysis was used to examine the effect of GA on voltage-gated sodium channels (VGSCs) in hippocampal CA1 pyramidal neurons. GA (10, 20 and 50 μM) inhibited the current amplitude of the VGSCs. These results suggest that the neuroprotective effects of GA in VD rats relate to the reduction of oxidative stress and inhibition of VGSCs. Our study provides experimental evidence for the application of GA in the treatment of cognitive deficits induced by Alzheimer's disease, stroke, or traumatic brain injury.
-
Volumes & issues
-
Volume 24 (2025)
-
Volume 23 (2024)
-
Volume 22 (2023)
-
Volume 21 (2022)
-
Volume 20 (2021)
-
Volume 19 (2020)
-
Volume 18 (2019)
-
Volume 17 (2018)
-
Volume 16 (2017)
-
Volume 15 (2016)
-
Volume 14 (2015)
-
Volume 13 (2014)
-
Volume 12 (2013)
-
Volume 11 (2012)
-
Volume 10 (2011)
-
Volume 9 (2010)
-
Volume 8 (2009)
-
Volume 7 (2008)
-
Volume 6 (2007)
-
Volume 5 (2006)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
A Retrospective, Multi-Center Cohort Study Evaluating the Severity- Related Effects of Cerebrolysin Treatment on Clinical Outcomes in Traumatic Brain Injury
Authors: Dafin F. Muresanu, Alexandru V. Ciurea, Radu M. Gorgan, Eva Gheorghita, Stefan I. Florian, Horatiu Stan, Alin Blaga, Nicolai Ianovici, Stefan M. Iencean, Dana Turliuc, Horia B. Davidescu, Cornel Mihalache, Felix M. Brehar, Anca . S. Mihaescu, Dinu C. Mardare, Aurelian Anghelescu, Carmen Chiparus, Magdalena Lapadat, Viorel Pruna, Dumitru Mohan, Constantin Costea, Daniel Costea, Claudiu Palade, Narcisa Bucur, Jesus Figueroa and Anton Alvarez
-
-
-
- More Less