Skip to content
2000
Volume 24, Issue 9
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Opioid addiction is a condition of the central nervous system that occurs as a result of using opiate-based substances, which can be either natural or synthetic chemicals. These have effects identical to those of morphine and work by interacting with opioid receptors such as morphine, heroin, opium, buprenorphine, and Oxycontin. Dopamine has been suggested to play a role in the mechanisms linked to opioid addiction. Additionally, neurotransmitters such as serotonin, norepinephrine, glutamate, and GABA may also have a significant impact. These processes play a critical role in the formation of brain circuits that are involved in the development of addictive behavior. The PI3K-Akt-mTOR pathway is widely recognized as an essential regulator of the effects induced by neurotransmitters on synaptic plasticity, protein synthesis, and cellular responses. This interplay has considerable importance in the development and persistence of opioid addiction, impacting several domains, including reward processing, stress reactivity, and brain plasticity. The understanding of these neurochemical modifications provides vital insights into the underlying mechanisms of addiction and presents potential pathways for treatments. The review enlisted the clinical trials of different types of opioid addiction or dependence. The review offers a succinct summary of many studies that establish a correlation between the PI3K/Akt-mTOR signaling pathway and various receptors implicated in multiple forms of opioid-related dependency.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273377530250408212447
2025-04-17
2025-10-29
Loading full text...

Full text loading...

References

  1. TrescotA.M. HelmS. HansenH. Opioids in the management of chronic non-cancer pain: An update of American Society of the Interventional Pain Physicians’ (ASIPP) guidelines.Pain Physician2008112S5S62.(Suppl.)1844364
    [Google Scholar]
  2. KurzA. SesslerD.I. Opioid-induced bowel dysfunction: Pathophysiology and potential new therapies.Drugs200363764967110.2165/00003495‑200363070‑0000312656645
    [Google Scholar]
  3. AuretK. SchugS.A. Underutilisation of opioids in elderly patients with chronic pain: Approaches to correcting the problem.Drugs Aging200522864165410.2165/00002512‑200522080‑0000216060715
    [Google Scholar]
  4. PergolizziJ.V. RaffaR.B. RosenblattM.H. Opioid withdrawal symptoms, a consequence of chronic opioid use and opioid use disorder: Current understanding and approaches to management.J. Clin. Pharm. Ther.202045589290310.1111/jcpt.1311431986228
    [Google Scholar]
  5. MaldonadoR. KoobG.F. Destruction of the locus coeruleus decreases physical signs of opiate withdrawal.Brain Res.1993605112813810.1016/0006‑8993(93)91364‑X8467382
    [Google Scholar]
  6. GuptaA. KhanH. KaurA. SinghT.G. Novel targets explored in the treatment of alcohol withdrawal syndrome.CNS Neurol. Disord. Drug Targets202120215817310.2174/187152731999920111815572133213357
    [Google Scholar]
  7. GargN. SinghT.G. KhanH. AroraS. KaurA. MannanA. Mechanistic interventions of selected Ocimum species in management of diabetes, obesity and liver disorders: Transformative developments from preclinical to clinical approaches.Biointerface Res. Appl. Chem.20211211304132310.33263/BRIAC121.13041323
    [Google Scholar]
  8. KoobG.F. Anhedonia, hyperkatifeia, and negative reinforcement in substance use disorders.Anhedonia: Preclinical, Translational, and Clinical Integration.Springer20225814716510.1007/7854_2021_28835112332
    [Google Scholar]
  9. DavisM.P. DigwoodG. MehtaZ. McPhersonM.L. Tapering opioids: A comprehensive qualitative review.Ann. Palliat. Med.20209258661010.21037/apm.2019.12.1032008341
    [Google Scholar]
  10. KoobG.F. Neurobiology of opioid addiction: Opponent process, hyperkatifeia, and negative reinforcement.Biol. Psychiatry2020871445310.1016/j.biopsych.2019.05.02331400808
    [Google Scholar]
  11. KhanH. GargN. SinghT.G. KaurA. ThapaK. Calpain inhibitors as potential therapeutic modulators in neurodegenerative diseases.Neurochem. Res.20224751125114910.1007/s11064‑021‑03521‑934982393
    [Google Scholar]
  12. KhanH. KaurP. SinghT.G. GrewalA.K. SoodS. Adenosine as a key mediator of neuronal survival in cerebral ischemic injury.Neurochem. Res.202247123543355510.1007/s11064‑022‑03737‑336042141
    [Google Scholar]
  13. VolpicelliJ. BalaramanG. HahnJ. WallaceH. BuxD. The role of uncontrollable trauma in the development of PTSD and alcohol addiction.Alcohol Res. Health199923425626210890822
    [Google Scholar]
  14. ThapaK. ShivamK. KhanH. Emerging targets for modulation of immune response and inflammation in stroke.Neurochem. Res.20234861663169010.1007/s11064‑023‑03875‑236763312
    [Google Scholar]
  15. OnaolapoO.J. OnaolapoA.Y. Melatonin in drug addiction and addiction management: Exploring an evolving multidimensional relationship.World J. Psychiatry201882647410.5498/wjp.v8.i2.6429988891
    [Google Scholar]
  16. SankhyanA. PawarP.K. Metformin loaded non-ionic surfactant vesicles: Optimization of formulation, effect of process variables and characterization.Daru2013211710.1186/2008‑2231‑21‑723351604
    [Google Scholar]
  17. CohenK. WeizmanA. WeinsteinA. Modulatory effects of cannabinoids on brain neurotransmission.Eur. J. Neurosci.20195032322234510.1111/ejn.1440730882962
    [Google Scholar]
  18. BlumK. ThanosP. Oscar-BermanM. Dopamine in the brain: Hypothesizing surfeit or deficit links to reward and addiction.J. Reward Defic. Syndr.2015139510410.17756/jrds.2015‑01627398406
    [Google Scholar]
  19. NockN.L. MinnesS. AlbertsJ.L. Neurobiology of substance use in adolescents and potential therapeutic effects of exercise for prevention and treatment of substance use disorders.Birth Defects Res.2017109201711172910.1002/bdr2.118229251846
    [Google Scholar]
  20. KostenT.R. BaxterL.E. Review article: Effective management of opioid withdrawal symptoms: A gateway to opioid dependence treatment.Am. J. Addict.2019282556210.1111/ajad.1286230701615
    [Google Scholar]
  21. SearsS.M.S. HewettS.J. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance.Exp. Biol. Med.202124691069108310.1177/153537022198926333554649
    [Google Scholar]
  22. KhanF. MehanA. Addressing opioid tolerance and opioid‐induced hypersensitivity: Recent developments and future therapeutic strategies.Pharmacol. Res. Perspect.202193e0078910.1002/prp2.78934096178
    [Google Scholar]
  23. BeldaX. FuentesS. DaviuN. NadalR. ArmarioA. Stress-induced sensitization: The hypothalamic–pituitary–adrenal axis and beyond.Stress201518326927910.3109/10253890.2015.106767826300109
    [Google Scholar]
  24. CusackB. BuggyD.J. Anaesthesia, analgesia, and the surgical stress response.BJA Educ.202020932132810.1016/j.bjae.2020.04.00633456967
    [Google Scholar]
  25. KovatsiL. NikolaouK. Opioids and the hormone oxytocin.Vitam. Horm.201911119522510.1016/bs.vh.2019.05.00331421701
    [Google Scholar]
  26. KatzmanM. SternatT. Neurobiology of hedonic tone: The relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse.Neuropsychiatr. Dis. Treat.2016122149216410.2147/NDT.S11181827601909
    [Google Scholar]
  27. MartinH. BullichS. GuiardB.P. FioramontiX. The impact of insulin on the serotonergic system and consequences on diabetes‐associated mood disorders.J. Neuroendocrinol.2021334e1292810.1111/jne.1292833506507
    [Google Scholar]
  28. ManhapraA. Complex persistent opioid dependence—An opioid-induced chronic pain syndrome.Curr. Treat. Options Oncol.202223792193510.1007/s11864‑022‑00985‑x35435616
    [Google Scholar]
  29. EspañaRA SchmeichelBE BerridgeCW Norepinephrine at the nexus of arousal, motivation and relapse.Brain Res20161641Pt B20721610.1016/j.brainres.2016.01.00226773688
    [Google Scholar]
  30. ValentinoR.J. Van BockstaeleE. Endogenous opioids: The downside of opposing stress.Neurobiol. Stress20151233210.1016/j.ynstr.2014.09.00625506603
    [Google Scholar]
  31. WorrellS.D. GouldT.J. Therapeutic potential of ketamine for alcohol use disorder.Neurosci. Biobehav. Rev.202112657358910.1016/j.neubiorev.2021.05.00633989669
    [Google Scholar]
  32. López-GamberoA.J. Rodríguez de FonsecaF. SuárezJ. Energy sensors in drug addiction: A potential therapeutic target.Addict. Biol.2021262e1293610.1111/adb.1293632638485
    [Google Scholar]
  33. WangX. NorthcuttA.L. CochranT.A. Methamphetamine activates toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell.ACS Chem. Neurosci.20191083622363410.1021/acschemneuro.9b0022531282647
    [Google Scholar]
  34. LazzeriG. BiagioniF. FulceriF. mTOR modulates methamphetamine-induced toxicity through cell clearing systems.Oxid. Med. Cell. Longev.201820181612474510.1155/2018/612474530647813
    [Google Scholar]
  35. XiaQ. XuM. ZhangP. LiuL. MengX. DongL. Therapeutic potential of autophagy in glioblastoma treatment with phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway inhibitors.Front. Oncol.20201057290410.3389/fonc.2020.57290433123479
    [Google Scholar]
  36. BehlT. KaurG. SehgalA. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives.Int. J. Mol. Sci.2021223141310.3390/ijms2203141333573368
    [Google Scholar]
  37. DingJ. DingY. WuJ. DengJ. YuQ. WangJ. “Jing-Ning Granules” can alleviate attention deficit hyperactivity disorder in rats by modulating dopaminergic D2/D1-Like receptor-mediated signaling pathways.Evid. Based Complement. Alternat. Med.2022202211510.1155/2022/913984136337583
    [Google Scholar]
  38. BockaertJ. MarinP. mTOR in brain physiology and pathologies.Physiol. Rev.20159541157118710.1152/physrev.00038.201426269525
    [Google Scholar]
  39. HanT. QinY. MouC. WangM. JiangM. LiuB. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway.Am. J. Transl. Res.20168104499450927830035
    [Google Scholar]
  40. El-SherbeenyN.A. SolimanN. YoussefA.M. The protective effect of biochanin A against rotenone-induced neurotoxicity in mice involves enhancing of PI3K/Akt/mTOR signaling and beclin-1 production.Ecotoxicol. Environ. Saf.202020511134410.1016/j.ecoenv.2020.11134432977283
    [Google Scholar]
  41. MaB. MeiD. WangF. LiuY. ZhouW. Cognitive enhancers as a treatment for heroin relapse and addiction.Pharmacol. Res.201914137838310.1016/j.phrs.2019.01.02530654135
    [Google Scholar]
  42. ColloG. CavalleriL. SpanoP. Structural plasticity in mesencephalic dopaminergic neurons produced by drugs of abuse: Critical role of BDNF and dopamine.Front. Pharmacol.2014525910.3389/fphar.2014.0025925505416
    [Google Scholar]
  43. HearingM. GrazianeN. DongY. ThomasM.J. Opioid and psychostimulant plasticity: Targeting overlap in nucleus accumbens glutamate signaling.Trends Pharmacol. Sci.201839327629410.1016/j.tips.2017.12.00429338873
    [Google Scholar]
  44. HeinsbroekJ.A. De VriesT.J. PetersJ. Glutamatergic systems and memory mechanisms underlying opioid addiction.Cold Spring Harb. Perspect. Med.2021113a03960210.1101/cshperspect.a03960232341068
    [Google Scholar]
  45. TukeyD.S. ZiffE.B. Ca2+-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors and dopamine D1 receptors regulate GluA1 trafficking in striatal neurons.J. Biol. Chem.201328849352973530610.1074/jbc.M113.51669024133208
    [Google Scholar]
  46. TarusawaE. MatsuiK. BudisantosoT. Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses.J. Neurosci.20092941128961290810.1523/JNEUROSCI.6160‑08.200919828804
    [Google Scholar]
  47. JedynakJ. HearingM. IngebretsonA. Cocaine and amphetamine induce overlapping but distinct patterns of AMPAR plasticity in nucleus accumbens medium spiny neurons.Neuropsychopharmacology201641246447610.1038/npp.2015.16826068728
    [Google Scholar]
  48. DayasC.V. SmithD.W. DunkleyP.R. An emerging role for the Mammalian target of rapamycin in “pathological” protein translation: Relevance to cocaine addiction.Front. Pharmacol.201231310.3389/fphar.2012.0001322347189
    [Google Scholar]
  49. LealG. AfonsoP.M. SalazarI.L. DuarteC.B. Regulation of hippocampal synaptic plasticity by BDNF.Brain Res.201516218210110.1016/j.brainres.2014.10.01925451089
    [Google Scholar]
  50. DolphinA.C. LeeA. Presynaptic calcium channels: Specialized control of synaptic neurotransmitter release.Nat. Rev. Neurosci.202021421322910.1038/s41583‑020‑0278‑232161339
    [Google Scholar]
  51. HayesA. HerlingerK. PatersonL. Lingford-HughesA. The neurobiology of substance use and addiction: Evidence from neuroimaging and relevance to treatment.BJPsych Adv.202026636737810.1192/bja.2020.68
    [Google Scholar]
  52. LoonenA.J.M. IvanovaS.A. Circuits regulating pleasure and happiness - Focus on potential biomarkers for circuitry including the habenuloid complex.Acta Neuropsychiatr.202234522923910.1017/neu.2022.1535587050
    [Google Scholar]
  53. HymanS.E. MalenkaR.C. NestlerE.J. Neural mechanisms of addiction: The role of reward-related learning and memory.Annu. Rev. Neurosci.200629156559810.1146/annurev.neuro.29.051605.11300916776597
    [Google Scholar]
  54. FlorescoS.B. ToddC.L. GraceA.A. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons.J. Neurosci.200121134915492210.1523/JNEUROSCI.21‑13‑04915.200111425919
    [Google Scholar]
  55. IllenbergerJ.M. HarrodS.B. MactutusC.F. McLaurinK.A. KallianpurA. BoozeR.M. HIV infection and neurocognitive disorders in the context of chronic drug abuse: Evidence for divergent findings dependent upon prior drug history.J. Neuroimmune Pharmacol.202015471572810.1007/s11481‑020‑09928‑532533296
    [Google Scholar]
  56. LiaqatH. ParveenA. KimS.Y. Neuroprotective natural products’ regulatory effects on depression via gut–brain axis targeting tryptophan.Nutrients20221416327010.3390/nu1416327036014776
    [Google Scholar]
  57. EitanS. EmeryM.A. BatesM.L.S. HorraxC. Opioid addiction: Who are your real friends?Neurosci. Biobehav. Rev.20178369771210.1016/j.neubiorev.2017.05.01728552458
    [Google Scholar]
  58. AsatiV. MahapatraD.K. BhartiS.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives.Eur. J. Med. Chem.201610931434110.1016/j.ejmech.2016.01.01226807863
    [Google Scholar]
  59. ChopraH. DeyP.S. DasD. Curcumin nanoparticles as promising therapeutic agents for drug targets.Molecules20212616499810.3390/molecules2616499834443593
    [Google Scholar]
  60. van de BlaakF.L. DumontG.J.H. Serotonin transporter availability, neurocognitive function and their correlation in abstinent 3,4‐methylenedioxymethamphetamine users.Hum. Psychopharmacol.2022371e281110.1002/hup.281134506649
    [Google Scholar]
  61. KarmakarS. LalG. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity.Theranostics202111115296531210.7150/thno.5598633859748
    [Google Scholar]
  62. BennettM.R. ArnoldJ. HattonS.N. LagopoulosJ. Regulation of fear extinction by long-term depression: The roles of endocannabinoids and brain derived neurotrophic factor.Behav. Brain Res.201731914816410.1016/j.bbr.2016.11.02927867101
    [Google Scholar]
  63. Enriquez-BarretoL. MoralesM. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia.Mol. Cell. Ther.201641210.1186/s40591‑016‑0047‑926877878
    [Google Scholar]
  64. ShahK. LahiriD.K. A tale of the good and bad: Remodeling of the microtubule network in the brain by Cdk5.Mol. Neurobiol.20175432255226810.1007/s12035‑016‑9792‑726944284
    [Google Scholar]
  65. DaviuN. BruchasM.R. MoghaddamB. SandiC. BeyelerA. Neurobiological links between stress and anxiety.Neurobiol. Stress20191110019110.1016/j.ynstr.2019.10019131467945
    [Google Scholar]
  66. WangN. WangM. Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway.BMC Anesthesiol.201919113410.1186/s12871‑019‑0808‑531351473
    [Google Scholar]
  67. RiedlA. SchledererM. PudelkoK. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses.J. Cell Sci.2017130120321810.1242/jcs.18810227663511
    [Google Scholar]
  68. MaieseK. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders.Br. J. Clin. Pharmacol.20168251245126610.1111/bcp.1280426469771
    [Google Scholar]
  69. OakesH.V. DeVeeC.E. FarmerB. Neurogenesis within the hippocampus after chronic methylphenidate exposure.J. Neural Transm.2019126220120910.1007/s00702‑018‑1949‑230370451
    [Google Scholar]
  70. BorrieS.C. BremsH. LegiusE. BagniC. Cognitive dysfunctions in intellectual disabilities: The contributions of the Ras-MAPK and PI3K-AKT-mTOR pathways.Annu. Rev. Genomics Hum. Genet.201718111514210.1146/annurev‑genom‑091416‑03533228859574
    [Google Scholar]
  71. StrangJ. VolkowN.D. DegenhardtL. Opioid use disorder.Nat. Rev. Dis. Primers202061310.1038/s41572‑019‑0137‑531919349
    [Google Scholar]
  72. GaoR. PenzesP. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders.Curr. Mol. Med.201515214616710.2174/156652401566615030300302825732149
    [Google Scholar]
  73. JembrekM. VlainicJ. GABA receptors: Pharmacological potential and pitfalls.Curr. Pharm. Des.201521344943495910.2174/138161282166615091412162426365137
    [Google Scholar]
  74. MacVicarB.A. TseF.W. CrichtonS.A. KettenmannH. GABA-activated Cl- channels in astrocytes of hippocampal slices.J. Neurosci.19899103577358310.1523/JNEUROSCI.09‑10‑03577.19892477511
    [Google Scholar]
  75. IshiujiY. Addiction and the itch‐scratch cycle. What do they have in common?Exp. Dermatol.201928121448145410.1111/exd.1402931482585
    [Google Scholar]
  76. SmaginD.A. GalyaminaA.G. KovalenkoI.L. KudryavtsevaN.N. Altered expression of genes associated with major neurotransmitter systems in the reward-related brain regions of mice with positive fighting experience.Int. J. Mol. Sci.202223211364410.3390/ijms23211364436362437
    [Google Scholar]
  77. XiaoZ. PengJ. WuL. ArafatA. YinF. The effect of IL-1β on synaptophysin expression and electrophysiology of hippocampal neurons through the PI3K/Akt/mTOR signaling pathway in a rat model of mesial temporal lobe epilepsy.Neurol. Res.201739764064810.1080/01616412.2017.131207028372486
    [Google Scholar]
  78. KoobG.F. SimonE.J. The neurobiology of addiction: Where we have been and where we are going.J. Drug Issues200939111513210.1177/00220426090390011020622969
    [Google Scholar]
  79. ZhangJ. WangL. WangH. SuZ. PangX. Neuroinflammation and central PI3K/Akt/mTOR signal pathway contribute to bone cancer pain.Mol. Pain201915174480691983024010.1177/174480691983024030717619
    [Google Scholar]
  80. D’IncalC. BroosJ. TorfsT. KooyR.F. Vanden BergheW. Towards kinase inhibitor therapies for fragile X syndrome: Tweaking twists in the autism spectrum kinase signaling network.Cells2022118132510.3390/cells1108132535456004
    [Google Scholar]
  81. ShandilyaA. MehanS. Dysregulation of IGF-1/GLP-1 signaling in the progression of ALS: Potential target activators and influences on neurological dysfunctions.Neurol. Sci.20214283145316610.1007/s10072‑021‑05328‑634018075
    [Google Scholar]
  82. KoobG. Le MoalM. Drug addiction, dysregulation of reward, and allostasis.Neuropsychopharmacology20012429712910.1016/S0893‑133X(00)00195‑011120394
    [Google Scholar]
  83. ZhengW. WuJ. GuJ. Modular characteristics and mechanism of action of herbs for endometriosis treatment in Chinese medicine: A data mining and network pharmacology–based identification.Front. Pharmacol.20201114710.3389/fphar.2020.0014732210799
    [Google Scholar]
  84. EidsonL.N. MurphyA.Z. Inflammatory mediators of opioid tolerance: Implications for dependency and addiction.Peptides2019115515810.1016/j.peptides.2019.01.00330890355
    [Google Scholar]
  85. BeuterS. ArdiZ. HorovitzO. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells.Sci. Rep.2016612971010.1038/srep2971027405707
    [Google Scholar]
  86. LiuK. YangY. ZhouF. XiaoY. ShiL. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy and relieves hyperalgesia in diabetic rats.Neuroreport202031964464910.1097/WNR.000000000000146132427714
    [Google Scholar]
  87. NeastaJ. BarakS. HamidaS.B. RonD. mTOR complex 1: A key player in neuroadaptations induced by drugs of abuse.J. Neurochem.2014130217218410.1111/jnc.1272524666346
    [Google Scholar]
  88. PrzewlockiR. Opioid abuse and brain gene expression.Eur. J. Pharmacol.20045001-333134910.1016/j.ejphar.2004.07.03615464044
    [Google Scholar]
  89. TiwariP. KhanH. SinghT.G. GrewalA.K. Poly (ADP-ribose) polymerase: An overview of mechanistic approaches and therapeutic opportunities in the management of stroke.Neurochem. Res.20224771830185210.1007/s11064‑022‑03595‑z35437712
    [Google Scholar]
  90. GargC. khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic implications of sonic hedgehog pathway in metabolic disorders: Novel target for effective treatment.Pharmacol. Res.202217910619410.1016/j.phrs.2022.10619435364246
    [Google Scholar]
  91. ShimizuM. AdachiS. MasudaM. KozawaO. MoriwakiH. Cancer chemoprevention with green tea catechins by targeting receptor tyrosine kinases.Mol. Nutr. Food Res.201155683284310.1002/mnfr.20100062221538846
    [Google Scholar]
  92. KongD. YamoriT. Advances in development of phosphatidylinositol 3-kinase inhibitors.Curr. Med. Chem.200916222839285410.2174/09298670978880322219689267
    [Google Scholar]
  93. DieterleA.M. BöhlerP. KeppelerH. PDK1 controls upstream PI3K expression and PIP3 generation.Oncogene201433233043305310.1038/onc.2013.26623893244
    [Google Scholar]
  94. PolchiA. MaginiA. MeoD.D. TanciniB. EmilianiC. mTOR signaling and neural stem cells: The tuberous sclerosis complex model.Int. J. Mol. Sci.2018195147410.3390/ijms1905147429772672
    [Google Scholar]
  95. Wataya-KanedaM. Mammalian target of rapamycin and tuberous sclerosis complex.J. Dermatol. Sci.20157929310010.1016/j.jdermsci.2015.04.00526051878
    [Google Scholar]
  96. SzwedA. KimE. JacintoE. Regulation and metabolic functions of mTORC1 and mTORC2.Physiol. Rev.202110131371142610.1152/physrev.00026.202033599151
    [Google Scholar]
  97. ZhouH. HuangS. The complexes of mammalian target of rapamycin.Curr. Protein Pept. Sci.201011640942410.2174/13892031079182409320491627
    [Google Scholar]
  98. MoritaM. GravelS.P. HuleaL. mTOR coordinates protein synthesis, mitochondrial activity and proliferation.Cell Cycle201514447348010.4161/15384101.2014.99157225590164
    [Google Scholar]
  99. XuZ. HanX. OuD. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy.Appl. Microbiol. Biotechnol.2020104257558710.1007/s00253‑019‑10257‑831832711
    [Google Scholar]
  100. YuL. WeiJ. LiuP. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer.Semin. Cancer Biol.202285699410.1016/j.semcancer.2021.06.01934175443
    [Google Scholar]
  101. PimentelG.D. RopelleE.R. RochaG.Z. CarvalheiraJ.B.C. The role of neuronal AMPK as a mediator of nutritional regulation of food intake and energy homeostasis.Metabolism201362217117810.1016/j.metabol.2012.07.00122898253
    [Google Scholar]
  102. KeR. XuQ. LiC. LuoL. HuangD. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism.Cell Biol. Int.201842438439210.1002/cbin.1091529205673
    [Google Scholar]
  103. FangC. PanJ. QuN. The AMPK pathway in fatty liver disease.Front. Physiol.20221397029210.3389/fphys.2022.97029236203933
    [Google Scholar]
  104. Mazei-RobisonM.S. NestlerE.J. Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons.Cold Spring Harb. Perspect. Med.201227a01207010.1101/cshperspect.a01207022762025
    [Google Scholar]
  105. NantaR. ShrivastavaA. SharmaJ. ShankarS. SrivastavaR.K. Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells.Mol. Cell. Biochem.20194541-2112310.1007/s11010‑018‑3448‑z30251117
    [Google Scholar]
  106. YuJ.S.L. CuiW. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination.Development2016143173050306010.1242/dev.13707527578176
    [Google Scholar]
  107. HouY. DanX. BabbarM. Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑731501588
    [Google Scholar]
  108. Calpe-LópezC. García-PardoM.P. AguilarM.A. Cannabidiol treatment might promote resilience to cocaine and methamphetamine use disorders: A review of possible mechanisms.Molecules20192414258310.3390/molecules2414258331315244
    [Google Scholar]
  109. FrancoisA. VeriteJ. BilanA.R. The mTOR Signaling Pathway in Neurodegenerative Diseases.Molecules to Medicine with mTOR.Cambridge, MassachusettsAcademic Press20168510410.1016/B978‑0‑12‑802733‑2.00011‑6
    [Google Scholar]
  110. KumarS. KundraP. RamsamyK. SurendiranA. Pharmacogenetics of opioids: A narrative review.Anaesthesia201974111456147010.1111/anae.1481331454083
    [Google Scholar]
  111. XuJ.T. ZhaoJ.Y. ZhaoX. Opioid receptor–triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia.J. Clin. Invest.2014124259260310.1172/JCI7023624382350
    [Google Scholar]
  112. GlavinG.B. Stress and brain noradrenaline: A review.Neurosci. Biobehav. Rev.19859223324310.1016/0149‑7634(85)90048‑X2861590
    [Google Scholar]
  113. MartiniF. FregnaL. BosiaM. PerrozziG. CavallaroR. Substance-related disorders.Fundamentals of Psychiatry for Health Care Professionals.ChamSpringer International Publishing202226329510.1007/978‑3‑031‑07715‑9_9
    [Google Scholar]
  114. ZhangJ.J. SongC.G. DaiJ.M. LiL. YangX.M. ChenZ.N. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu‐opioid receptor.MedComm202233e14810.1002/mco2.14835774845
    [Google Scholar]
  115. LiZ. SunQ. LiuQ. Compound 511 ameliorates MRSA-induced lung injury by attenuating morphine-induced immunosuppression in mice via PI3K/AKT/mTOR pathway.Phytomedicine202310815447510.1016/j.phymed.2022.15447536252465
    [Google Scholar]
  116. MoC. ZengZ. DengQ. DingY. XiaoR. Imbalance between T helper 17 and regulatory T cell subsets plays a significant role in the pathogenesis of systemic sclerosis.Biomed. Pharmacother.201810817718310.1016/j.biopha.2018.09.03730219674
    [Google Scholar]
  117. GrahamD.L. KrishnanV. LarsonE.B. Tropomyosin-related kinase B in the mesolimbic dopamine system: Region-specific effects on cocaine reward.Biol. Psychiatry200965869670110.1016/j.biopsych.2008.09.03218990365
    [Google Scholar]
  118. CibriánD. Sánchez-MadridF. CD69: From activation marker to metabolic gatekeeper.Eur. J. Immunol.201747694695310.1002/eji.20164683728475283
    [Google Scholar]
  119. ChenZ. LaurenceA. O’SheaJ.J. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation.Semin. Immunol.200719640040810.1016/j.smim.2007.10.01518166487
    [Google Scholar]
  120. ZhuJ. PaulW.E. Peripheral CD4 + T‐cell differentiation regulated by networks of cytokines and transcription factors.Immunol. Rev.2010238124726210.1111/j.1600‑065X.2010.00951.x20969597
    [Google Scholar]
  121. SinghS.P. ZhangH.H. TsangH. PLZF regulates CCR6 and is critical for the acquisition and maintenance of the Th17 phenotype in human cells.J. Immunol.201519494350436110.4049/jimmunol.140109325833398
    [Google Scholar]
  122. ChenL. FliesD.B. Molecular mechanisms of T cell co-stimulation and co-inhibition.Nat. Rev. Immunol.201313422724210.1038/nri340523470321
    [Google Scholar]
  123. HancuG. ModroiuA. Between therapeutical benefit and marketing strategy.Pharmaceuticals202215224010.3390/ph1502024035215352
    [Google Scholar]
  124. SriramK. LaughlinJ.G. RangamaniP. TartakovskyD.M. Shear-induced nitric oxide production by endothelial cells.Biophys. J.2016111120822110.1016/j.bpj.2016.05.03427410748
    [Google Scholar]
  125. KhanM.I. MomenyM. OstadhadiS. Thalidomide attenuates development of morphine dependence in mice by inhibiting PI3K/Akt and nitric oxide signaling pathways.Prog. Neuropsychopharmacol. Biol. Psychiatry201882394810.1016/j.pnpbp.2017.12.00229223784
    [Google Scholar]
  126. BadshahI. AnwarM. MurtazaB. KhanM.I. Molecular mechanisms of morphine tolerance and dependence; Novel insights and future perspectives.Mol. Cell. Biochem.202347961457148510.1007/s11010‑023‑04810‑337470850
    [Google Scholar]
  127. MitsudomiT. YatabeY. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer.Cancer Sci.200798121817182410.1111/j.1349‑7006.2007.00607.x17888036
    [Google Scholar]
  128. SmolewskiP. Investigating mammalian target of rapamycin inhibitors for their anticancer properties.Expert Opin. Investig. Drugs200615101201122710.1517/13543784.15.10.120116989597
    [Google Scholar]
  129. AydinlikS. UvezA. KiyanH.T. Palladium (II) complex and thalidomide intercept angiogenic signaling via targeting FAK/Src and Erk/Akt/PLCγ dependent autophagy pathways in human umbilical vein endothelial cells.Microvasc. Res.202113810422910.1016/j.mvr.2021.10422934339726
    [Google Scholar]
  130. Al-MassriK.F. AhmedL.A. El-AbharH.S. Mesenchymal stem cells in chemotherapy‐induced peripheral neuropathy: A new challenging approach that requires further investigations.J. Tissue Eng. Regen. Med.202014110812210.1002/term.297231677248
    [Google Scholar]
  131. TurnerN.A. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs).J. Mol. Cell. Cardiol.20169418920010.1016/j.yjmcc.2015.11.00226542796
    [Google Scholar]
  132. SchallT.J. Biology of the rantes/sis cytokine family.Cytokine19913316518310.1016/1043‑4666(91)90013‑41715772
    [Google Scholar]
  133. PrabhakarN.K. Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches.Int. Immunopharmacol.202210810890210.1016/j.intimp.2022.108902
    [Google Scholar]
  134. RogersT.J. PetersonP.K. Opioid G protein-coupled receptors: Signals at the crossroads of inflammation.Trends Immunol.200324311612110.1016/S1471‑4906(03)00003‑612615205
    [Google Scholar]
  135. SteeleA.D. SzaboI. BednarF. RogersT.J. Interactions between opioid and chemokine receptors: Heterologous desensitization.Cytokine Growth Factor Rev.200213320922210.1016/S1359‑6101(02)00007‑212486875
    [Google Scholar]
  136. BotzB. BölcskeiK. HelyesZ. Challenges to develop novel anti‐inflammatory and analgesic drugs.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201793e142710.1002/wnan.142727576790
    [Google Scholar]
  137. SadhasivamS. ChidambaranV. Pharmacogenomics of opioids and perioperative pain management.Pharmacogenomics201213151719174010.2217/pgs.12.15223171337
    [Google Scholar]
  138. DouX. YanD. LiuS. GaoL. ShanA. Thymol alleviates LPS-induced liver inflammation and apoptosis by inhibiting NLRP3 inflammasome activation and the AMPK-mTOR-autophagy pathway.Nutrients20221414280910.3390/nu1414280935889766
    [Google Scholar]
  139. EisensteinTK ChenX InanS Chemokine receptor antagonists in combination with morphine as a novel strategy for opioid dose reduction in pain management.Mil Med20201851305.(Suppl. 1)10.1093/milmed/usz32032074321
    [Google Scholar]
  140. InanS. EisensteinT.K. WatsonM.N. Coadministration of chemokine receptor antagonists with morphine potentiates morphine’s analgesic effect on incisional pain in rats.J. Pharmacol. Exp. Ther.2018367343344110.1124/jpet.118.25289030249618
    [Google Scholar]
  141. ZhongH. NeubigR.R. Regulator of G protein signaling proteins: Novel multifunctional drug targets.J. Pharmacol. Exp. Ther.2001297383784510.1016/S0022‑3565(24)29606‑311356902
    [Google Scholar]
  142. SaklothF. PolizuC. BertheratF. ZachariouV. Regulators of G protein signaling in analgesia and addiction.Mol. Pharmacol.202098673975010.1124/mol.119.11920632474445
    [Google Scholar]
  143. HooksS.B. MartemyanovK. ZachariouV. A role of RGS proteins in drug addiction.Biochem. Pharmacol.2008751768410.1016/j.bcp.2007.07.04517880927
    [Google Scholar]
  144. WarSA Functional elucidation of human somatostatin receptor-3: Implications in breast tumor biology2013
    [Google Scholar]
  145. HusseinS.A. IsmailH.K. Abdel AalS.A. Effect of tramadol drug on some biochemical and immunological parameters in albino male rats; Evaluation of possible reversal following its withdrawal.Benha Vet. Med. J.201733241842910.21608/bvmj.2017.30589
    [Google Scholar]
  146. SayesC.M. The differential cytotoxicity of water-soluble fullerenes.Nano Lett.20044101881188710.1021/nl0489586
    [Google Scholar]
  147. Pourtalebi JahromiL. SasanipourZ. AzadiA. Promising horizon to alleviate Alzeheimer’s disease pathological hallmarks via inhibiting mTOR signaling pathway: A new application for a commonplace analgesic.Med. Hypotheses201811012012410.1016/j.mehy.2017.12.00729317054
    [Google Scholar]
  148. IbrahimI.M. AlthagafyH.S. Abd-alhameedE.K. Al-ThubianiW.S. HassaneinE.H.M. Promising hepatoprotective effects of lycopene in different liver diseases.Life Sci.202231012113110.1016/j.lfs.2022.12113136306869
    [Google Scholar]
  149. HelmyM.A. AbdallaH.A. Abd El RahmanH.A. AhmedD.A.M. Hepatotoxic effect of tramadol and O-desmethyltramadol in HepG2 cells and potential role of PI3K/AKT/mTOR.Xenobiotica20215191029103710.1080/00498254.2021.196191934319855
    [Google Scholar]
  150. FinnA.K. WhistlerJ.L. Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal.Neuron200132582983910.1016/S0896‑6273(01)00517‑711738029
    [Google Scholar]
  151. ArdestaniA. LupseB. KidoY. LeibowitzG. MaedlerK. mTORC1 signaling: A double-edged sword in diabetic β cells.Cell Metab.201827231433110.1016/j.cmet.2017.11.00429275961
    [Google Scholar]
  152. UcbekA. Effect of metformin on the human T98G glioblastoma multiforme cell line.Exp. Ther. Med.2014751285129010.3892/etm.2014.159724940426
    [Google Scholar]
  153. MeroniS.B. GalardoM.N. RindoneG. GorgaA. RieraM.F. CigorragaS.B. Molecular mechanisms and signaling pathways involved in sertoli cell proliferation.Front. Endocrinol.20191022410.3389/fendo.2019.0022431040821
    [Google Scholar]
  154. PanY. SunX. JiangL. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation.J. Neuroinflammation201613129410.1186/s12974‑016‑0754‑927855689
    [Google Scholar]
  155. ShirooieS. SahebgharaniM. EsmaeiliJ. DehpourA.R. In vitro evaluation of effects of metformin on morphine and methadone tolerance through mammalian target of rapamycin signaling pathway.J. Cell. Physiol.201923433058306610.1002/jcp.2712530146703
    [Google Scholar]
  156. SibarovD.A. AntonovS.M. Calcium-dependent desensitization of NMDA receptors.Biochemistry201883101173118310.1134/S000629791810003630472955
    [Google Scholar]
  157. PerluigiM. Di DomenicoF. ButterfieldD.A. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy.Neurobiol. Dis.201584394910.1016/j.nbd.2015.03.01425796566
    [Google Scholar]
  158. EntezariM. HashemiD. TaheriazamA. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation.Biomed. Pharmacother.202214611256310.1016/j.biopha.2021.11256335062059
    [Google Scholar]
  159. CuiY. ZhangX.Q. CuiY. XinW.J. JingJ. LiuX.G. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats.Neuroscience2010171113414310.1016/j.neuroscience.2010.08.06420826199
    [Google Scholar]
  160. KumarV. ZhangM.X. SwankM.W. KunzJ. WuG.Y. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways.J. Neurosci.20052549112881129910.1523/JNEUROSCI.2284‑05.200516339024
    [Google Scholar]
  161. AhmadiF. Ghanbar ZadehM. HabibiA.H. KarimiF. Effect of resistance training with Spirulina platensis on PI3K/Akt/mTOR/p70S6k signaling pathway in cardiac muscle.Sci. Sports2020352919810.1016/j.scispo.2019.06.003
    [Google Scholar]
  162. ZhuW.L. WangS.J. LiuM.M. Glycine site N-methyl-D-aspartate receptor antagonist 7-CTKA produces rapid antidepressant-like effects in male rats.J. Psychiatry Neurosci.201338530631610.1503/jpn.12022823611177
    [Google Scholar]
  163. KimK. YoonH. Gamma-aminobutyric acid signaling in damage response, metabolism, and disease.Int. J. Mol. Sci.2023245458410.3390/ijms2405458436902014
    [Google Scholar]
  164. ChenP. Proteomic and metabolomic approaches elucidate the molecular mechanism of emodin against neuropathic pain through modulating the gamma-aminobutyric acid (GABA)-ergic pathway and PI3K/AKT/NF-κB pathway.Phytother. Res.20233751883189910.1002/ptr.770436723382
    [Google Scholar]
  165. LiZ. PengX. JiaX. Spinal heat shock protein 27 participates in PDGFRβ‐mediated morphine tolerance through PI3K/Akt and p38 MAPK signalling pathways.Br. J. Pharmacol.2020177225046506210.1111/bph.1516932559815
    [Google Scholar]
  166. MourouzisI. SaranteasT. PerimenisP. Morphine administration at reperfusion fails to improve postischaemic cardiac function but limits myocardial injury probably via heat-shock protein 27 phosphorylation.Eur. J. Anaesthesiol.200926757258110.1097/EJA.0b013e32832a225a19359990
    [Google Scholar]
  167. FuX. ZhangY. Research progress of p38 as a new therapeutic target against morphine tolerance and the current status of therapy of morphine tolerance.J. Drug Target.202331215216510.1080/1061186X.2022.213889536264036
    [Google Scholar]
  168. OtaniH. Ischemic preconditioning: From molecular mechanisms to therapeutic opportunities.Antioxid. Redox Signal.200810220724810.1089/ars.2007.167917999631
    [Google Scholar]
  169. KearneyA.L. NorrisD.M. GhomlaghiM. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis.eLife202110e6694210.7554/eLife.6694234253290
    [Google Scholar]
  170. GhoshS. HaydenM.S. New regulators of NF-κB in inflammation.Nat. Rev. Immunol.200881183784810.1038/nri242318927578
    [Google Scholar]
  171. VasefiM.S. KrukJ.S. HeikkilaJ.J. BeazelyM.A. 5‐Hydroxytrypta-mine type 7 receptor neuroprotection against NMDA‐induced excitotoxicity is PDGFβ receptor dependent.J. Neurochem.20131251263610.1111/jnc.1215723336565
    [Google Scholar]
  172. MaldonadoR. SaiardiA. ValverdeO. SamadT.A. RoquesB.P. BorrelliE. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors.Nature1997388664258658910.1038/415679252189
    [Google Scholar]
  173. KreekM.J. NielsenD.A. ButelmanE.R. LaForgeK.S. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction.Nat. Neurosci.20058111450145710.1038/nn158316251987
    [Google Scholar]
  174. ViverosM.P. MarcoE.M. LlorenteR. López-GallardoM. Endocannabinoid system and synaptic plasticity: Implications for emotional responses.Neural Plast.2007200711210.1155/2007/5290817641734
    [Google Scholar]
  175. Fernández-EspejoE. Núñez-DomínguezL. Endocannabinoid-mediated synaptic plasticity and substance use disorders.Neurología202237645946510.1016/j.nrleng.2018.12.02434538595
    [Google Scholar]
  176. MoralesP. ReggioP.H. An update on non-CB1, non-CB2 cannabinoid related G-protein-coupled receptors.Cannabis Cannabinoid Res.20172126527310.1089/can.2017.003629098189
    [Google Scholar]
  177. HeydarzadehS. MoshtaghieA.A. DaneshpoorM. HedayatiM. Regulators of glucose uptake in thyroid cancer cell lines.Cell Commun. Signal.20201818310.1186/s12964‑020‑00586‑x32493394
    [Google Scholar]
  178. CianiE. GuidiS. BartesaghiR. ContestabileA. Nitric oxide regulates cGMP‐dependent cAMP‐responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: Implication for a survival role of nitric oxide.J. Neurochem.20028251282128910.1046/j.1471‑4159.2002.01080.x12358775
    [Google Scholar]
  179. NairA. VaidyaV.A. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?J. Biosci.200631342343410.1007/BF0270411417006024
    [Google Scholar]
  180. DudleyA.C. GriffioenA.W. Pathological angiogenesis: Mechanisms and therapeutic strategies.Angiogenesis202326331334710.1007/s10456‑023‑09876‑737060495
    [Google Scholar]
  181. KaurP. KhanH. GrewalA.K. DuaK. SinghT.G. Therapeutic potential of NOX inhibitors in neuropsychiatric disorders.Psychopharmacology202324091825184010.1007/s00213‑023‑06424‑537507462
    [Google Scholar]
  182. WuZ.Q. LiM. ChenJ. ChiZ.Q. LiuJ.G. Involvement of cAMP/cAMP-dependent protein kinase signaling pathway in regulation of Na+,K+-ATPase upon activation of opioid receptors by morphine.Mol. Pharmacol.200669386687610.1124/mol.105.01650116317112
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273377530250408212447
Loading
/content/journals/cnsnddt/10.2174/0118715273377530250408212447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test