Skip to content
2000
Volume 24, Issue 9
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Inorganic fluoride is widely used in dental practices to treat problems like dental caries and prevent bone-related issues. Exposure to excess amounts of fluoride both through drinking water or other sources impairs vital functions of the body and can prove to be toxic, especially for the central nervous system. Sodium fluoride (NaF) crosses the blood-brain barrier in early developmental stages and causes impairments related to learning and memory, anxiety, decreased locomotor ability, and in some cases, depression-like behaviour, especially in children. Major mechanisms involved in this toxicity include reduction in levels of nicotinic and muscarinic receptors, autophagy, and apoptosis in neurons, decreased glucose consumption, inhibition of enzymes involved in the generation of energy and transmission of the synapse, mitochondrial dysfunction, and increased oxidative stress leading to inflammation and neuronal cell death. Out of all these, an increase in oxidative stress was reported to be one of the main mechanisms of fluoride-induced neurotoxicity. Based on these inferences, various natural compounds having antioxidant properties, like curcumin, aloe vera, quercetin, epigallocatechin gallate, . have been studied for their protective role in sodium fluoride-induced neurotoxicity. Involvement of other pathways like Nrf2/Keap pathways, SIRT3, ., have warranted a need for further detailed study to identify other potential therapeutic targets like AMPK to prevent/treat fluoride-induced neurotoxicity. The present review captures fluoride, its role in neurodevelopment, and mechanisms & pathways involved by which fluoride can hurt neurodevelopment & how AMPK can be a possible therapeutic target.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273300345250206084817
2025-02-24
2025-12-15
Loading full text...

Full text loading...

References

  1. MadhusudhanN. BashaP.M. RaiP. AhmedF. PrasadG.R. Effect of maternal fluoride exposure on developing CNS of rats: protective role of Aloe vera, Curcuma longa and Ocimum sanctum.Indian J. Exp. Biol.201048883083621341542
    [Google Scholar]
  2. GaoQ. LiuY-J. GuanZ-Z. Decreased learning and memory ability in rats with fluorosis: increased oxidative stress and reduced cholinesterase activity in the brain.Fluoride Res Rep2009424277285
    [Google Scholar]
  3. NiuQ. ChenJ. XiaT. Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity.Environ. Pollut.201823388989910.1016/j.envpol.2017.09.01529100748
    [Google Scholar]
  4. TuW. ZhangQ. LiuY. Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells.Toxicol. Appl. Pharmacol.2018347606910.1016/j.taap.2018.03.03029609003
    [Google Scholar]
  5. YanN. LiuY. LiuS. Fluoride-Induced Neuron Apoptosis and Expressions of Inflammatory Factors by Activating Microglia in Rat Brain.Mol. Neurobiol.20165374449446010.1007/s12035‑015‑9380‑226253724
    [Google Scholar]
  6. LiuF. MaJ. ZhangH. Fluoride exposure during development affects both cognition and emotion in mice.Physiol. Behav.20141241710.1016/j.physbeh.2013.10.02724184405
    [Google Scholar]
  7. VaniM.L. ReddyK.P. Effects of fluoride accumulation on some enzymes of brain and gastrocnemius muscle of mice.Fluoride200033116
    [Google Scholar]
  8. LaiC. ChenQ. DingY. LiuH. TangZ. Emodin protected against synaptic impairment and oxidative stress induced by fluoride in SH‐SY5Y cells by modulating ERK1/2/Nrf2/HO‐1 pathway.Environ. Toxicol.202035992292910.1002/tox.2292832293791
    [Google Scholar]
  9. ShanmugamT. AbdullaS. YakulasamyV. SelvarajM. MathanR. A mechanism underlying the neurotoxicity induced by sodium fluoride and its reversal by epigallocatechin gallate in the rat hippocampus: involvement of NrF2/Keap-1 signaling pathway.J. Basic Appl. Zool.20187911710.1186/s41936‑018‑0020‑z
    [Google Scholar]
  10. SongC. HepingH. ShenY. AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride.Chemosphere202024412549510.1016/j.chemosphere.2019.12549531837563
    [Google Scholar]
  11. SolankiY.S. AgarwalM. GuptaA.B. GuptaS. ShuklaP. Fluoride occurrences, health problems, detection, and remediation methods for drinking water: A comprehensive review.Sci. Total Environ.2022807Pt 115060110.1016/j.scitotenv.2021.15060134597567
    [Google Scholar]
  12. MohapatraM. AnandS. MishraB.K. GilesD.E. SinghP. Review of fluoride removal from drinking water.J. Environ. Manage.2009911677710.1016/j.jenvman.2009.08.01519775804
    [Google Scholar]
  13. PanH.B. DarvellB.W. Solubility of calcium fluoride and fluorapatite by solid titration.Arch. Oral Biol.200752986186810.1016/j.archoralbio.2007.03.00217451638
    [Google Scholar]
  14. SalifuA. PetrusevskiB. GhebremichaelK. BuamahR. AmyG. Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana.J. Contam. Hydrol.2012140-141344410.1016/j.jconhyd.2012.08.00222985626
    [Google Scholar]
  15. Guidelines for Drinking-Water QualityFourth Edition Incorporating the First Addendum.GenevaWorld Health Organization20171628759192
    [Google Scholar]
  16. ZuoH. ChenL. KongM. Toxic effects of fluoride on organisms.Life Sci.2018198182410.1016/j.lfs.2018.02.00129432760
    [Google Scholar]
  17. ParkY. KimD.G. KuH.O. KangH.G. Fluoride levels and biochemical assessments in cattle accidentally exposed to hydrofluoric acid in Korea.Toxicol. Res.202137337938410.1007/s43188‑020‑00076‑934295801
    [Google Scholar]
  18. OlsenK.B. FruchterJ.S. Identification of the physical and chemical characteristics of volcanic hazards.Am. J. Public Health1986763Suppl.455210.2105/AJPH.76.Suppl.453004240
    [Google Scholar]
  19. DuffinS. DuffinM. GrootveldM. Revisiting fluoride in the twenty-first century: safety and efficacy considerations.Front. Oral Health2022387315710.3389/froh.2022.87315735860375
    [Google Scholar]
  20. XiangB. TangJ. FengX. ZhuY. LiY. TanT. Preparation of aluminium-hydroxide-modified diatomite and its fluoride adsorption mechanism.Sci. Rep.2023131387110.1038/s41598‑023‑30901‑836890239
    [Google Scholar]
  21. PodgorskiJ. BergM. Global analysis and prediction of fluoride in groundwater.Nat. Commun.2022131423210.1038/s41467‑022‑31940‑x35915064
    [Google Scholar]
  22. KhanA.A. WheltonH. O’MullaneD. Determining the optimal concentration of fluoride in drinking water in Pakistan.Community Dent. Oral Epidemiol.200432316617210.1111/j.1600‑0528.2004.00152.x15151686
    [Google Scholar]
  23. BeckJ.D. Public health dentistry: planning for the future.J. Public Health Dent.1987471263010.1111/j.1752‑7325.1987.tb01958.x3469408
    [Google Scholar]
  24. GambhirR. KaurA. SinghA. SandhuA.S. DhaliwalA.S. Dental public health in India: An insight.J. Family Med. Prim. Care20165474775110.4103/2249‑4863.20115528348984
    [Google Scholar]
  25. CiX. ZhouJ. LvH. YuQ. PengL. HuaS. Betulin exhibits anti-inflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism.Cell Death Dis.201785e2798e810.1038/cddis.2017.3928518138
    [Google Scholar]
  26. Fluoride in Drinking WaterA Scientific Review of EPA’s Standards.Washington, D.C.National Academies Press20061157110.17226/11571
    [Google Scholar]
  27. CollinsT.F.X. SprandoR.L. BlackT.N. Developmental toxicity of sodium fluoride measured during multiple generations.Food Chem. Toxicol.200139886787610.1016/S0278‑6915(01)00033‑311434994
    [Google Scholar]
  28. AgalakovaN.I. NadeiO.V. Inorganic fluoride and functions of brain.Crit. Rev. Toxicol.2020501284610.1080/10408444.2020.172206132073339
    [Google Scholar]
  29. CrossD.W. CartonR.J. Fluoridation: a violation of medical ethics and human rights.Int. J. Occup. Environ. Health200391242910.1179/oeh.2003.9.1.2412749628
    [Google Scholar]
  30. Di BartolomeoS. CorazzariM. NazioF. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy.J. Cell Biol.2010191115516810.1083/jcb.20100210020921139
    [Google Scholar]
  31. Kimsa-DudekM. Synowiec-WojtarowiczA. DerewniukM. Impact of fluoride and a static magnetic field on the gene expression that is associated with the antioxidant defense system of human fibroblasts.Chem. Biol. Interact.2018287131910.1016/j.cbi.2018.04.00429630877
    [Google Scholar]
  32. JagtapS. YenkieM.K. LabhsetwarN. RayaluS. Fluoride in drinking water and defluoridation of water.Chem. Rev.201211242454246610.1021/cr200285522303811
    [Google Scholar]
  33. YeungC.A. A systematic review of the efficacy and safety of fluoridation.Evid. Based Dent.200892394310.1038/sj.ebd.640057818584000
    [Google Scholar]
  34. McNallyM. DownieJ. The ethics of water fluoridation.J. Can. Dent. Assoc.2000661159259311253350
    [Google Scholar]
  35. OttappilakkilH. BabuS. BalasubramanianS. ManoharanS. PerumalE. Fluoride induced neurobehavioral impairments in experimental animals: A brief review.Biol. Trace Elem. Res.202320131214123610.1007/s12011‑022‑03242‑235488996
    [Google Scholar]
  36. PatilR.U. UndeM.P. DastoorP. The untold story of fluoridation: Revisiting the changing perspectives.Indian J. Occup. Environ. Med.201822312112710.4103/ijoem.IJOEM_124_1830647513
    [Google Scholar]
  37. MastersR.D. CoplanM.J. Water treatment with silicofluorides and lead toxicity.Int. J. Environ. Stud.199956443544910.1080/00207239908711215
    [Google Scholar]
  38. KawakamiT. NishinoM. ImaiY. MiyazakiH. AmarasooriyaA.A.G.D. De-fluoridation of drinking water by co-precipitation with magnesium hydroxide in electrolysis.Cogent Eng.201851155849810.1080/23311916.2018.1558498
    [Google Scholar]
  39. BarbierO. Arreola-MendozaL. Del RazoL.M. Molecular mechanisms of fluoride toxicity.Chem. Biol. Interact.2010188231933310.1016/j.cbi.2010.07.01120650267
    [Google Scholar]
  40. SarkarC. PalS. DasN. DindaB. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.Food Chem. Toxicol.20146622423610.1016/j.fct.2014.01.02024468673
    [Google Scholar]
  41. ZhouG. TangS. YangL. Effects of long-term fluoride exposure on cognitive ability and the underlying mechanisms: Role of autophagy and its association with apoptosis.Toxicol. Appl. Pharmacol.201937811460810.1016/j.taap.2019.11460831173788
    [Google Scholar]
  42. GrandjeanP. Developmental fluoride neurotoxicity: an updated review.Environ. Health201918111010.1186/s12940‑019‑0551‑x31856837
    [Google Scholar]
  43. UddinM.K. AhmedS.S. NaushadM. A mini update on fluoride adsorption from aqueous medium using clay materials.Desalination Water Treat.201914523224810.5004/dwt.2019.23509
    [Google Scholar]
  44. García-MontalvoE.A. Reyes-PérezH. Del RazoL.M. Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress.Toxicology20092632-3758310.1016/j.tox.2009.06.00819540901
    [Google Scholar]
  45. DuL. The effect of fluorine on the developing human brain.Zhonghua Bing Li Xue Za Zhi19922142182201473206
    [Google Scholar]
  46. AnwarT. LiuX. SuntioT. ER-targeted beclin 1 supports autophagosome biogenesis in the absence of ULK1 and ULK2 kinases.Cells20198547510.3390/cells805047531108943
    [Google Scholar]
  47. Angmar-MånssonB. WhitfordG.M. Enamel fluorosis related to plasma F levels in the rat.Caries Res.1984181253210.1159/0002607436580951
    [Google Scholar]
  48. AlersS. LöfflerA.S. WesselborgS. StorkB. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks.Mol. Cell. Biol.201232121110.1128/MCB.06159‑1122025673
    [Google Scholar]
  49. ShajiE. SarathK.V. SantoshM. KrishnaprasadP.K. AryaB.K. BabuM.S. Fluoride contamination in groundwater: A global review of the status, processes, challenges, and remedial measures.Geoscience Frontiers202415210173410.1016/j.gsf.2023.101734
    [Google Scholar]
  50. FawellJ. BaileyK. ChiltonJ. Fluoride in drinking-water.Geneva, SwitzerlandWorld Health Organization200616
    [Google Scholar]
  51. LukeJ. Fluoride deposition in the aged human pineal gland.Caries Res.200135212512810.1159/00004744311275672
    [Google Scholar]
  52. O’MullaneD.M. BaezR.J. JonesS. Fluoride and oral health.Community Dent. Health2016332699927352462
    [Google Scholar]
  53. HarriehausenC.X. DosaniF.Z. ChiquetB.T. BarrattM.S. QuockR.L. Fluoride intake of infants from formula.J. Clin. Pediatr. Dent.2019431344110.17796/1053‑4625‑43.1.730289368
    [Google Scholar]
  54. DingY YanhuiGao SunH The relationships between low levels of urine fluoride on children’s intelligence, dental fluorosis in endemic fluorosis areas in Hulunbuir, Inner Mongolia, China.J. Hazard. Mater.20111862-31942194610.1016/j.jhazmat.2010.12.09721237562
    [Google Scholar]
  55. TillC. GreenR. GrundyJ.G. Community water fluoridation and urinary fluoride concentrations in a national sample of pregnant women in canada.Environ. Health Perspect.20181261010700110.1289/EHP354630392399
    [Google Scholar]
  56. Valdez JiménezL. López GuzmánO.D. Cervantes FloresM. In utero exposure to fluoride and cognitive development delay in infants.Neurotoxicology201759657010.1016/j.neuro.2016.12.01128077305
    [Google Scholar]
  57. ChoubisaS.L. Status of fluorosis in animals.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.201282333133910.1007/s40011‑012‑0026‑0
    [Google Scholar]
  58. HeindelJ. BatesH.K. PriceC.J. MarrM.C. MyersC.B. SchwetzB.A. Developmental toxicity evaluation of sodium fluoride administered to rats and rabbits in drinking water.Fundam. Appl. Toxicol.199630216217710.1006/faat.1996.00538812262
    [Google Scholar]
  59. MandinicZ. CurcicM. AntonijevicB. LekicC.P. CarevicM. Relationship between fluoride intake in Serbian children living in two areas with different natural levels of fluorides and occurrence of dental fluorosis.Food Chem. Toxicol.20094761080108410.1016/j.fct.2009.01.03819425228
    [Google Scholar]
  60. PrakashB. SabalS.K. VermaR. PjJ. SoniI. Sodium fluoride-induced oxidative stress and histological changes in liver of swiss albino mice and amelioration by Ocimum sanctum linn.Asian J. Pharm. Clin. Res.201811919519910.22159/ajpcr.2018.v11i9.26840
    [Google Scholar]
  61. Recommended Dietary Allowances.In: National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. 10th Ed.. Washington (DC):National Academies Press (US)198910.17226/134925144070
    [Google Scholar]
  62. SpittleB. Psychopharmacology of fluoride.Int. Clin. Psychopharmacol.199492798210.1097/00004850‑199400920‑000028056997
    [Google Scholar]
  63. ChiocaL.R. RauppI.M. Da CunhaC. LossoE.M. AndreatiniR. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats.Eur. J. Pharmacol.20085791-319620110.1016/j.ejphar.2007.10.01918001709
    [Google Scholar]
  64. EkambaramP. PaulV. Calcium preventing locomotor behavioral and dental toxicities of fluoride by decreasing serum fluoride level in rats.Environ. Toxicol. Pharmacol.20019414114610.1016/S1382‑6689(00)00063‑611292576
    [Google Scholar]
  65. GuiC.Z. RanL.Y. LiJ.P. GuanZ.Z. Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis.Neurotoxicol. Teratol.201032553654110.1016/j.ntt.2010.03.01020381606
    [Google Scholar]
  66. DonnellyD.F. CarrollJ.L. Mitochondrial function and carotid body transduction.High Alt. Med. Biol.20056212113210.1089/ham.2005.6.12116060847
    [Google Scholar]
  67. ButterfieldD.A. Oxidative stress in neurodegenerative disorders.Antioxid. Redox Signal.2006811-121971197310.1089/ars.2006.8.197117034342
    [Google Scholar]
  68. MumtazN. PandeyG. LabhasetwarP.K. Global fluoride occurrence, available technologies for fluoride removal and electrolytic defluoridation: A review.Crit. Rev. Environ. Sci. Technol.20152015104676810.1080/10643389.2015.1046768
    [Google Scholar]
  69. BashaP.M. MadhusudhanN. Pre and post natal exposure of fluoride induced oxidative macromolecular alterations in developing central nervous system of rat and amelioration by antioxidants.Neurochem. Res.20103571017102810.1007/s11064‑010‑0150‑220336367
    [Google Scholar]
  70. NarayanaswamyM. PilerM.B. Effect of maternal exposure of fluoride on biometals and oxidative stress parameters in developing CNS of rat.Biol. Trace Elem. Res.20101331718210.1007/s12011‑009‑8413‑y19495574
    [Google Scholar]
  71. ZhangS. NiuQ. GaoH. Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride.Environ. Pollut.19872129710410.1016/j.envpol.2016.01.05926840522
    [Google Scholar]
  72. GuthS. HüserS. RothA. Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses.Arch. Toxicol.20209451375141510.1007/s00204‑020‑02725‑232382957
    [Google Scholar]
  73. Mendoza-SchulzA. Solano-AgamaC. Arreola-MendozaL. The effects of fluoride on cell migration, cell proliferation, and cell metabolism in GH4C1 pituitary tumour cells.Toxicol. Lett.2009190217918610.1016/j.toxlet.2009.07.01419619626
    [Google Scholar]
  74. AnuradhaC.D. KannoS. HiranoS. Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells.Free Radic. Biol. Med.200131336737310.1016/S0891‑5849(01)00591‑311461774
    [Google Scholar]
  75. HorganA.M. LagrangeM.T. CopenhaverP.F. Developmental expression of G proteins in a migratory population of embryonic neurons.Development1994120472974210.1242/dev.120.4.7297600953
    [Google Scholar]
  76. Izquierdo-VegaJ.A. Sánchez-GutiérrezM. Del RazoL.M. Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss.Toxicol. Appl. Pharmacol.2008230335235710.1016/j.taap.2008.03.00818455746
    [Google Scholar]
  77. KubotaK. LeeD.H. TsuchiyaM. Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation.J. Biol. Chem.200528024231942320210.1074/jbc.M50328820015849362
    [Google Scholar]
  78. FloraS.J.S. MittalM. MishraD. Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain.J. Neurol. Sci.20092851-219820510.1016/j.jns.2009.07.00119635623
    [Google Scholar]
  79. ZhaoQ. NiuQ. ChenJ. Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: mechanisms of action in vitro and associations with cognition in rats and children.Arch. Toxicol.201993370972610.1007/s00204‑019‑02390‑030659323
    [Google Scholar]
  80. ReddyY.P. TiwariS.K. ShaikA.P. AlsaeedA. SultanaA. ReddyP.K. Effect of sodium fluoride on neuroimmunological parameters, oxidative stress and antioxidative defenses.Toxicol. Mech. Methods2014241313610.3109/15376516.2013.84322424024668
    [Google Scholar]
  81. MeldrumB.S. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.J. Nutr.20001304Suppl.1007S1015S10.1093/jn/130.4.1007S10736372
    [Google Scholar]
  82. NiuR. SunZ. ChengZ. LiZ. WangJ. Decreased learning ability and low hippocampus glutamate in offspring rats exposed to fluoride and lead.Environ. Toxicol. Pharmacol.200928225425810.1016/j.etap.2009.04.01221784012
    [Google Scholar]
  83. KinawyA.A. Synergistic oxidative impact of aluminum chloride and sodium fluoride exposure during early stages of brain development in the rat.Environ. Sci. Pollut. Res. Int.20192611109511096010.1007/s11356‑019‑04491‑w30788699
    [Google Scholar]
  84. GuanZ.Z. WangY.N. XiaoK.Q. Influence of chronic fluorosis on membrane lipids in rat brain.Neurotoxicol. Teratol.199820553754210.1016/S0892‑0362(97)00136‑09761592
    [Google Scholar]
  85. MukhopadhyayD. SrivastavaR. ChattopadhyayA. Sodium fluoride generates ROS and alters transcription of genes for xenobiotic metabolizing enzymes in adult zebrafish (Danio rerio) liver: expression pattern of Nrf2/Keap1 (INrf2).Toxicol. Mech. Methods201525536437310.3109/15376516.2015.102534825798649
    [Google Scholar]
  86. WangS. SongP. ZouM-H. AMP-activated protein kinase, stress responses and cardiovascular diseases.Clin. Sci.20121221255527310.1042/CS2011062522390198
    [Google Scholar]
  87. WuL. CenY. FengM. Metformin activates the protective effects of the AMPK pathway in acute lung injury caused by paraquat poisoning.Oxid. Med. Cell. Longev.2019201911010.1155/2019/170971831781324
    [Google Scholar]
  88. HamzaR.Z. El-ShenawyN.S. IsmailH.A.A. Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat.J. Basic Clin. Physiol. Pharmacol.201526323725110.1515/jbcpp‑2014‑006525918918
    [Google Scholar]
  89. KumarN.K. NageshwarM. ReddyK.P. Protective effect of curcumin on hippocampal and behavior changes in rats exposed to fluoride during pre- and post-natal period.Basic Clin. Neurosci.202011328930010.32598/bcn.11.2.1189.132963722
    [Google Scholar]
  90. OyagbemiA.A. AdebiyiO.E. AdigunK.O. Clofibrate, a PPAR-α agonist, abrogates sodium fluoride-induced neuroinflammation, oxidative stress, and motor incoordination via modulation of GFAP/Iba‐1/anti-calbindin signaling pathways.Environ. Toxicol.202035224225310.1002/tox.2286131710167
    [Google Scholar]
  91. ZhangC. RenC. ChenH. The analog of Ginkgo biloba extract 761 is a protective factor of cognitive impairment induced by chronic fluorosis.Biol. Trace Elem. Res.20131531-322923610.1007/s12011‑013‑9645‑423605048
    [Google Scholar]
  92. HerzigS. ShawR.J. AMPK: guardian of metabolism and mitochondrial homeostasis.Nat. Rev. Mol. Cell Biol.201819212113510.1038/nrm.2017.9528974774
    [Google Scholar]
  93. KimJ. YangG. KimY. KimJ. HaJ. AMPK activators: mechanisms of action and physiological activities.Exp. Mol. Med.2016484e224e410.1038/emm.2016.1627034026
    [Google Scholar]
  94. GarciaD. ShawR.J. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance.Mol. Cell201766678980010.1016/j.molcel.2017.05.03228622524
    [Google Scholar]
  95. XiaoB. SandersM.J. UnderwoodE. Structure of mammalian AMPK and its regulation by ADP.Nature2011472734223023310.1038/nature0993221399626
    [Google Scholar]
  96. ChenL. XinF.J. WangJ. Conserved regulatory elements in AMPK.Nature20134987453E8E1010.1038/nature1218923765502
    [Google Scholar]
  97. HawleyS.A. FullertonM.D. RossF.A. The ancient drug salicylate directly activates AMP-activated protein kinase.Science2012336608391892210.1126/science.121532722517326
    [Google Scholar]
  98. RossF.A. MacKintoshC. HardieD.G. AMP ‐activated protein kinase: a cellular energy sensor that comes in 12 flavours.FEBS J.2016283162987300110.1111/febs.1369826934201
    [Google Scholar]
  99. ScottJ.W. HawleyS.A. GreenK.A. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations.J. Clin. Invest.2004113227428410.1172/JCI1987414722619
    [Google Scholar]
  100. CheongH. YorimitsuT. ReggioriF. LegakisJ.E. WangC.W. KlionskyD.J. Atg17 regulates the magnitude of the autophagic response.Mol. Biol. Cell20051673438345310.1091/mbc.e04‑10‑089415901835
    [Google Scholar]
  101. KabeyaY. KamadaY. BabaM. TakikawaH. SasakiM. OhsumiY. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy.Mol. Biol. Cell20051652544255310.1091/mbc.e04‑08‑066915743910
    [Google Scholar]
  102. KamadaY. FunakoshiT. ShintaniT. NaganoK. OhsumiM. OhsumiY. Tor-mediated induction of autophagy via an Apg1 protein kinase complex.J. Cell Biol.200015061507151310.1083/jcb.150.6.150710995454
    [Google Scholar]
  103. HaarE.V. LeeS. BandhakaviS. GriffinT.J. KimD.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40.Nat. Cell Biol.20079331632310.1038/ncb154717277771
    [Google Scholar]
  104. GanleyI.G. LamD.H. WangJ. DingX. ChenS. JiangX. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy.J. Biol. Chem.200928418122971230510.1074/jbc.M90057320019258318
    [Google Scholar]
  105. HosokawaN. HaraT. KaizukaT. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy.Mol. Biol. Cell20092071981199110.1091/mbc.e08‑12‑124819211835
    [Google Scholar]
  106. JooJ.H. DorseyF.C. JoshiA. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy.Mol. Cell201143457258510.1016/j.molcel.2011.06.01821855797
    [Google Scholar]
  107. JungC.H. JunC.B. RoS.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery.Mol. Biol. Cell20092071992200310.1091/mbc.e08‑12‑124919225151
    [Google Scholar]
  108. Maria FimiaG. StoykovaA. RomagnoliA. Ambra1 regulates autophagy and development of the nervous system.Nature200744771481121112510.1038/nature0592517589504
    [Google Scholar]
  109. MartinaJ.A. PuertollanoR. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes.J. Cell Biol.2013200447549110.1083/jcb.20120913523401004
    [Google Scholar]
  110. PaquetteM. El-HoujeiriL.C. ZirdenL. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3.Autophagy202117123957397510.1080/15548627.2021.189874833734022
    [Google Scholar]
  111. SettembreC. Di MaltaC. PolitoV.A. TFEB links autophagy to lysosomal biogenesis.Science201133260361429143310.1126/science.120459221617040
    [Google Scholar]
  112. BachM. LaranceM. JamesD.E. RammG. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events.Biochem. J.2011440228329110.1042/BJ2010189421819378
    [Google Scholar]
  113. ShinH.J.R. KimH. OhS. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy.Nature2016534760855355710.1038/nature1801427309807
    [Google Scholar]
  114. RossoP. AMPK in the central nervous system: physiological roles and pathologic | RRB.Res. Rep. Biol.20167113
    [Google Scholar]
  115. SaitoM. SaitoM. DasB.C. Involvement of AMP‐activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain.Int. J. Dev. Neurosci.2019771485910.1016/j.ijdevneu.2019.01.00730707928
    [Google Scholar]
  116. PeixotoCA OliveiraWH AraújoSMR NunesAKS AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration.Exp Neurol2017298Pt A314110.1016/j.expneurol.2017.08.01328844606
    [Google Scholar]
  117. HardieD.G. RossF.A. HawleyS.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis.Nat. Rev. Mol. Cell Biol.201213425126210.1038/nrm331122436748
    [Google Scholar]
  118. HardieD.G. SchafferB.E. BrunetA. AMPK: An energy-sensing pathway with multiple inputs and outputs.Trends Cell Biol.201626319020110.1016/j.tcb.2015.10.01326616193
    [Google Scholar]
  119. ZhangM. WangA. XiaT. HeP. Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-κB in primary cultured rat hippocampal neurons.Toxicol. Lett.200817911510.1016/j.toxlet.2008.03.00218485627
    [Google Scholar]
  120. ZhangM. WangA. HeW. Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons.Toxicology2007236320821610.1016/j.tox.2007.04.00717537562
    [Google Scholar]
  121. GuM. Effects of berberine on cell cycle, dna, reactive oxygen species, and apoptosis in L929 murine fibroblast cells.Evid. Based Complement. Alternat. Med.201579630610.1155/2015/796306
    [Google Scholar]
  122. XuY. BaiL. YangX. Recent advances in anti-inflammation via AMPK activation.Heliyon20241013e3367010.1016/j.heliyon.2024.e3367039040381
    [Google Scholar]
  123. NoorH.B. MouN.A. SalemL. Anti-inflammatory property of AMP-activated protein Kinase.Antiinflamm. Antiallergy Agents Med. Chem.202019124110.2174/187152301866619083010002231530260
    [Google Scholar]
  124. HummastiS. HotamisligilG.S. Endoplasmic reticulum stress and inflammation in obesity and diabetes.Circ. Res.2010107557959110.1161/CIRCRESAHA.110.22569820814028
    [Google Scholar]
  125. MauryE. BrichardS.M. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome.Mol. Cell. Endocrinol.2010314111610.1016/j.mce.2009.07.03119682539
    [Google Scholar]
  126. GustafsonB. Adipose tissue, inflammation and atherosclerosis.J. Atheroscler. Thromb.201017433234110.5551/jat.393920124732
    [Google Scholar]
  127. ZhaoX. ZmijewskiJ.W. LorneE. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury.Am. J. Physiol. Lung Cell. Mol. Physiol.20082953L497L50410.1152/ajplung.90210.200818586954
    [Google Scholar]
  128. BaiA. MaA.G. YongM. AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis.Biochem. Pharmacol.201080111708171710.1016/j.bcp.2010.08.00920797389
    [Google Scholar]
  129. MyerburgM.M. KingJ.D.Jr OysterN.M. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.Am. J. Respir. Cell Mol. Biol.201042667668410.1165/2009‑0147OC19617399
    [Google Scholar]
  130. GiriS. NathN. SmithB. ViolletB. SinghA.K. SinghI. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase.J. Neurosci.200424247948710.1523/JNEUROSCI.4288‑03.200414724246
    [Google Scholar]
  131. LiC. ZhangC. ZhouH. Inhibitory effects of betulinic acid on LPS-induced neuroinflammation involve M2 microglial polarization via CaMKKβ-dependent AMPK activation.Front. Mol. Neurosci.2018119810.3389/fnmol.2018.0009829666569
    [Google Scholar]
  132. ParkS.Y. ChoiM.H. LiM. LiK. ParkG. ChoiY.W. AMPK/Nrf2 signaling is involved in the anti-neuroinflammatory action of Petatewalide B from Petasites japonicus against lipopolysaccharides in microglia.Immunopharmacol. Immunotoxicol.201840323224110.1080/08923973.2018.143479129433360
    [Google Scholar]
  133. LuD.Y. TangC.H. ChenY.H. WeiI.H. Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia.J. Cell. Biochem.2010110369770510.1002/jcb.2258020512929
    [Google Scholar]
  134. WangY. RuanW. MiJ. Balasubramide derivative 3C modulates microglia activation via CaMKKβ-dependent AMPK/PGC-1α pathway in neuroinflammatory conditions.Brain Behav. Immun.20186710111710.1016/j.bbi.2017.08.00628803158
    [Google Scholar]
  135. XuY. XuY. WangY. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.Brain Behav. Immun.20155029831310.1016/j.bbi.2015.07.01526188187
    [Google Scholar]
  136. ZhouX. CaoY. AoG. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation.Antioxid. Redox Signal.201421121741175810.1089/ars.2013.558724624937
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273300345250206084817
Loading
/content/journals/cnsnddt/10.2174/0118715273300345250206084817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test