Skip to content
2000
Volume 24, Issue 11
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease worldwide and presents as a progressive motor disorder. Gene mutations play a pivotal role in the degeneration of dopaminergic neurons in the substantia nigra region. Mutations in the Leucine rich repeat kinase 2 (LRRK2) gene have been identified as one of the most common genetic causes of PD. LRRK2 is a multi-functional protein involved in several critical cellular processes, including mitochondrial function, autophagy, vesicular trafficking, and immune system regulation. Dysregulation of these processes due to aberrant LRRK2 activity contributes to neuronal degeneration, particularly in dopaminergic neurons, which are most affected in PD. The current review discusses the structure of LRRK2, its function, and pathogenic mutations in the context of PD. However, significant challenges remain, particularly in terms of ensuring drug specificity, minimizing off-target effects, and understanding the long-term safety and efficacy of these treatments. As we advance our understanding of LRRK2 biology, it remains a highly promising target for therapeutic strategies aimed at modifying the course of Parkinson’s disease.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273377507250320035243
2025-04-14
2025-12-16
Loading full text...

Full text loading...

References

  1. MorrisH.R. SpillantiniM.G. SueC.M. Williams-GrayC.H. The pathogenesis of Parkinson’s disease.Lancet20244031042329330410.1016/S0140‑6736(23)01478‑2 38245249
    [Google Scholar]
  2. SharmaV. SharmaP. SinghT.G. Mechanistic insights on TLR-4 mediated inflammatory pathway in neurodegenerative diseases.Pharmacol. Rep.202476467969210.1007/s43440‑024‑00613‑5 38918327
    [Google Scholar]
  3. SharmaV. SharmaP. SinghT.G. Emerging role of Nrf2 in Parkinson’s disease therapy: A critical reassessment.Metab. Brain Dis.20244017010.1007/s11011‑024‑01452‑2 39699763
    [Google Scholar]
  4. RameshS. ArachchigeA.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature.AIMS Neurosci.202310320023110.3934/Neuroscience.2023017 37841347
    [Google Scholar]
  5. El-MansouryB. MalouiA.B. DraouiA. Non-Motor Symptoms in Parkinson’s Disease: The Other Side of the Disease.In: Experimental and Clinical Evidence of the Neuropathology of Parkinson’s Disease.Hershey, Pennsylvania, USAIGI Global20232545
    [Google Scholar]
  6. OrsoB. BrosseS. FrasnelliJ. ArnaldiD. Opportunities and pitfalls of REM sleep behavior disorder and olfactory dysfunction as early markers in parkinson’s disease.J. Parkinsons Dis.202414s2S275S28210.3233/JPD‑230348
    [Google Scholar]
  7. Bandres-CigaS. Saez-AtienzarS. KimJ.J. Large-scale pathway-specific polygenic risk, transcriptomic community networks and functional inferences in Parkinson disease.bioRxiv2020
    [Google Scholar]
  8. TurskiP. ChaberskaI. SzukałoP. Review of the epidemiology and variability of LRRK2 non-p.Gly2019Ser pathogenic mutations in Parkinson’s disease.Front. Neurosci.20221697127010.3389/fnins.2022.971270 36203807
    [Google Scholar]
  9. JeongG.R. LeeB.D. Pathological functions of LRRK2 in Parkinson’s disease.Cells2020912256510.3390/cells9122565 33266247
    [Google Scholar]
  10. MartinI. KimJ.W. DawsonV.L. DawsonT.M. LRRK2 pathobiology in Parkinson’s disease.J. Neurochem.2014131555456510.1111/jnc.12949 25251388
    [Google Scholar]
  11. WuC. Structure and Function of the G Domain of Parkinson’s Disease-associated Protein LRRK2.United StatesIndiana University-Purdue University Indianapolis2019
    [Google Scholar]
  12. XiongY. YuJ. LRRK2 in Parkinson’s disease: Upstream regulation and therapeutic targeting.Trends Mol. Med.2024301098299610.1016/j.molmed.2024.07.003 39153957
    [Google Scholar]
  13. LiskovaA. SamecM. KoklesovaL. KudelaE. KubatkaP. GolubnitschajaO. Mitochondriopathies as a clue to systemic disorders—analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine.Int. J. Mol. Sci.2021224200710.3390/ijms22042007 33670490
    [Google Scholar]
  14. DzamkoN. GeczyC.L. HallidayG.M. Inflammation is genetically implicated in Parkinson’s disease.Neuroscience20153028910210.1016/j.neuroscience.2014.10.028 25450953
    [Google Scholar]
  15. FilipponeA. ManninoD. CucinottaL. PaternitiI. EspositoE. CampoloM. LRRK2 inhibition by PF06447475 antagonist modulates early neuronal damage after spinal cord trauma.Antioxidants2022119163410.3390/antiox11091634 36139708
    [Google Scholar]
  16. Paisán-RuizC. LewisP.A. SingletonA.B. LRRK2: Cause, risk, and mechanism.J. Parkinsons Dis.2013328510310.3233/JPD‑130192 23938341
    [Google Scholar]
  17. RayS. BenderS. KangS. LinR. GlicksmanM.A. LiuM. The Parkinson disease-linked LRRK2 protein mutation I2020T stabilizes an active state conformation leading to increased kinase activity.J. Biol. Chem.201428919130421305310.1074/jbc.M113.537811 24695735
    [Google Scholar]
  18. BiosaA. TrancikovaA. CivieroL. GTPase activity regulates kinase activity and cellular phenotypes of Parkinson’s disease-associated LRRK2.Hum. Mol. Genet.20132261140115610.1093/hmg/dds522 23241358
    [Google Scholar]
  19. LiaoJ. WuC.X. BurlakC. Parkinson disease-associated mutation R1441H in LRRK2 prolongs the “active state” of its GTPase domain.Proc. Natl. Acad. Sci. USA2014111114055406010.1073/pnas.1323285111 24591621
    [Google Scholar]
  20. JeongG.R. JangE.H. BaeJ.R. Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration.Mol. Neurodegener.2018131810.1186/s13024‑018‑0240‑1 29439717
    [Google Scholar]
  21. LeeS. LiuH.P. LinW.Y. GuoH. LuB. LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction.J. Neurosci.20103050169591696910.1523/JNEUROSCI.1807‑10.2010 21159966
    [Google Scholar]
  22. NiuJ. YuM. WangC. XuZ. Leucine‐rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin‐like protein.J. Neurochem.2012122365065810.1111/j.1471‑4159.2012.07809.x 22639965
    [Google Scholar]
  23. WangX. YanM.H. FujiokaH. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1.Hum. Mol. Genet.20122191931194410.1093/hmg/dds003 22228096
    [Google Scholar]
  24. RamsdenN. PerrinJ. RenZ. Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons.ACS Chem. Biol.20116101021102810.1021/cb2002413 21812418
    [Google Scholar]
  25. HindleS. AfsariF. StarkM. Dopaminergic expression of the Parkinsonian gene LRRK2-G2019S leads to non-autonomous visual neurodegeneration, accelerated by increased neural demands for energy.Hum. Mol. Genet.201322112129214010.1093/hmg/ddt061 23396536
    [Google Scholar]
  26. YaoC. KhouryE.R. WangW. LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson’s disease.Neurobiol. Dis.2010401738110.1016/j.nbd.2010.04.002 20382224
    [Google Scholar]
  27. LiuZ. HamamichiS. LeeD.B. Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson’s disease models.Hum. Mol. Genet.201120203933394210.1093/hmg/ddr312 21768216
    [Google Scholar]
  28. TsikaE. NguyenA.P.T. DusonchetJ. ColinP. SchneiderB.L. MooreD.J. Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson’s disease.Neurobiol. Dis.201577496110.1016/j.nbd.2015.02.019 25731749
    [Google Scholar]
  29. ChouJ.S. ChenC.Y. ChenY.L. (G2019S) LRRK2 causes early-phase dysfunction of SNpc dopaminergic neurons and impairment of corticostriatal long-term depression in the PD transgenic mouse.Neurobiol. Dis.20146819019910.1016/j.nbd.2014.04.021 24830390
    [Google Scholar]
  30. WengY.H. ChenC.Y. LinK.J. (R1441C) LRRK2 induces the degeneration of SN dopaminergic neurons and alters the expression of genes regulating neuronal survival in a transgenic mouse model.Exp. Neurol.2016275Pt 110411510.1016/j.expneurol.2015.09.001 26363496
    [Google Scholar]
  31. XiongY. NeifertS. KaruppagounderS.S. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice.Proc. Natl. Acad. Sci. USA201811571635164010.1073/pnas.1712648115 29386392
    [Google Scholar]
  32. LongoF. MercatelliD. NovelloS. Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice.Acta Neuropathol. Commun.2017512210.1186/s40478‑017‑0426‑8 28292328
    [Google Scholar]
  33. MaekawaT. MoriS. SasakiY. The I2020T Leucine-rich repeat kinase 2 transgenic mouse exhibits impaired locomotive ability accompanied by dopaminergic neuron abnormalities.Mol. Neurodegener.2012711510.1186/1750‑1326‑7‑15 22534020
    [Google Scholar]
  34. BichlerZ. LimH.C. ZengL. TanE.K. Non-motor and motor features in LRRK2 transgenic mice.PLoS One201387e7024910.1371/journal.pone.0070249 23936174
    [Google Scholar]
  35. MattaS. KolenV.K. CunhaD.R. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis.Neuron20127561008102110.1016/j.neuron.2012.08.022 22998870
    [Google Scholar]
  36. MinF. XinH. NaL. Distinctive roles of Rac1 and Rab29 in LRRK2 mediated membrane trafficking and neurite outgrowth.J. Biomed. Res.201832214515610.7555/JBR.31.20170039 29336357
    [Google Scholar]
  37. ChanD. CitroA. CordyJ.M. ShenG.C. WolozinB. Rac1 protein rescues neurite retraction caused by G2019S leucine-rich repeat kinase 2 (LRRK2).J. Biol. Chem.201128618161401614910.1074/jbc.M111.234005 21454543
    [Google Scholar]
  38. StegerM. DiezF. DhekneH.S. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis.Elife20176e3101210.7554/eLife.31012
    [Google Scholar]
  39. LiC. WeiZ. FanY. The GTPase Rab43 controls the anterograde ER-Golgi trafficking and sorting of GPCRs.Cell Rep.20172141089110110.1016/j.celrep.2017.10.011 29069590
    [Google Scholar]
  40. DusonchetJ. LiH. GuillilyM. A Parkinson’s disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity.Hum. Mol. Genet.201423184887490510.1093/hmg/ddu202 24794857
    [Google Scholar]
  41. MartinI. KimJ.W. LeeB.D. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease.Cell2014157247248510.1016/j.cell.2014.01.064 24725412
    [Google Scholar]
  42. KawakamiF. YabataT. OhtaE. LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth.PLoS One201271e3083410.1371/journal.pone.0030834 22303461
    [Google Scholar]
  43. TolosaE. VilaM. KleinC. RascolO. LRRK2 in Parkinson disease: Challenges of clinical trials.Nat. Rev. Neurol.20201629710710.1038/s41582‑019‑0301‑2 31980808
    [Google Scholar]
  44. HouX. WatzlawikJ.O. FieselF.C. SpringerW. Autophagy in Parkinson’s disease.J. Mol. Biol.202043282651267210.1016/j.jmb.2020.01.037 32061929
    [Google Scholar]
  45. MaxfieldF.R. WillardJ.M. LuS. Lysosomes: Biology, diseases, and therapeutics.Hoboken, New JerseyJohn Wiley & Sons201610.1002/9781118978320
    [Google Scholar]
  46. ManzoniC. LewisP.A. LRRK2 and autophagy.Adv. Neurobiol.2017148910510.1007/978‑3‑319‑49969‑7_5
    [Google Scholar]
  47. ZalonA.J. QuiriconiD.J. PitcairnC. MazzulliJ.R. α-Synuclein: Multiple pathogenic roles in trafficking and proteostasis pathways in Parkinson’s disease.Neuroscientist202430561263510.1177/10738584241232963 38420922
    [Google Scholar]
  48. KozinaE. SadasivanS. JiaoY. Mutant LRRK2 mediates peripheral and central immune responses leading to neurodegeneration in vivo.Brain201814161753176910.1093/brain/awy077 29800472
    [Google Scholar]
  49. GrelH. WoznicaD. RatajczakK. Mitochondrial dynamics in neurodegenerative diseases: Unraveling the role of fusion and fission processes.Int. J. Mol. Sci.202324171303310.3390/ijms241713033 37685840
    [Google Scholar]
  50. GaoJ. WangL. LiuJ. XieF. SuB. WangX. Abnormalities of mitochondrial dynamics in neurodegenerative diseases.Antioxidants2017622510.3390/antiox6020025 28379197
    [Google Scholar]
  51. KumarS. BehlT. SehgalA. Exploring the focal role of LRRK2 kinase in Parkinson’s disease.Environ. Sci. Pollut. Res. Int.20222922323683238210.1007/s11356‑022‑19082‑5 35147886
    [Google Scholar]
  52. Yong-KeeC. Determination of the sub-cellular mechanisms underlying neurodegeneration in parkinson’s disease.Thesis, Doctoral dissertation2013
    [Google Scholar]
  53. HarveyK. OuteiroT.F. The role of LRRK2 in cell signalling.Biochem. Soc. Trans.201947119720710.1042/BST20180464 30578345
    [Google Scholar]
  54. HurE.M. LeeB.D. LRRK2 at the crossroad of aging and parkinson’s disease.Genes202112450510.3390/genes12040505 33805527
    [Google Scholar]
  55. DelcambreS. GhelfiJ. OuzrenN. Mitochondrial mechanisms of LRRK2 G2019S penetrance.Front. Neurol.20201188110.3389/fneur.2020.00881 32982917
    [Google Scholar]
  56. TheocharopoulouG. The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases.AIMS Neurosci.202071436510.3934/Neuroscience.2020004 32455165
    [Google Scholar]
  57. KußM. Interferon gamma induces leucine-rich repeat kinase LRRK2 via extracellular signal-regulated kinase ERK5.Thesis, Doctoral dissertation, University of Tübingen
    [Google Scholar]
  58. WallingsR.L. TanseyM.G. LRRK2 regulation of immune-pathways and inflammatory disease.Biochem. Soc. Trans.20194761581159510.1042/BST20180463 31769472
    [Google Scholar]
  59. NazishI. ArberC. PiersT.M. Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells.Neurochem. Int.202114710507010.1016/j.neuint.2021.105070 34004238
    [Google Scholar]
  60. RuiQ. NiH. LiD. GaoR. ChenG. The role of LRRK2 in neurodegeneration of Parkinson disease.Curr. Neuropharmacol.20181691348135710.2174/1570159X16666180222165418 29473513
    [Google Scholar]
  61. HoM.S. Microglia in Parkinson’s disease.Adv. Exp. Med. Biol.2019117533535310.1007/978‑981‑13‑9913‑8_13
    [Google Scholar]
  62. AlmudimeeghS. Modulation of LRRK2 mediated signaling in immune cells.Thesis, Doctoral dissertation, UCL (University College London.
    [Google Scholar]
  63. RochaE.M. MirandaD.B.R. CastroS. LRRK2 inhibition prevents endolysosomal deficits seen in human Parkinson’s disease.Neurobiol. Dis.202013410462610.1016/j.nbd.2019.104626 31618685
    [Google Scholar]
  64. YangQ. ZhouJ. Neuroinflammation in the central nervous system: Symphony of glial cells.Glia20196761017103510.1002/glia.23571 30548343
    [Google Scholar]
  65. BhattacharyaT. SoaresG.A.B. ChopraH. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma15030804 35160749
    [Google Scholar]
  66. MarogianniC. SokratousM. DardiotisE. HadjigeorgiouG.M. BogdanosD. XiromerisiouG. Neurodegeneration and inflammation—an interesting interplay in Parkinson’s disease.Int. J. Mol. Sci.20202122842110.3390/ijms21228421 33182554
    [Google Scholar]
  67. TanseyM.G. WallingsR.L. HouserM.C. HerrickM.K. KeatingC.E. JoersV. Inflammation and immune dysfunction in Parkinson disease.Nat. Rev. Immunol.2022221165767310.1038/s41577‑022‑00684‑6 35246670
    [Google Scholar]
  68. HarryG.J. Microglia in neurodegenerative events—an initiator or a significant other?Int. J. Mol. Sci.20212211581810.3390/ijms22115818 34072307
    [Google Scholar]
  69. ZhengT. ZhangZ. Activated microglia facilitate the transmission of α-synuclein in Parkinson’s disease.Neurochem. Int.202114810509410.1016/j.neuint.2021.105094 34097990
    [Google Scholar]
  70. HakimiM. SelvananthamT. SwintonE. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures.J. Neural Transm.2011118579580810.1007/s00702‑011‑0653‑2 21552986
    [Google Scholar]
  71. ThévenetJ. GobertP.R. Hooft van HuijsduijnenR. WiessnerC. SagotY.J. Regulation of LRRK2 expression points to a functional role in human monocyte maturation.PLoS One201166e2151910.1371/journal.pone.0021519 21738687
    [Google Scholar]
  72. MoehleM.S. WebberP.J. TseT. LRRK2 inhibition attenuates microglial inflammatory responses.J. Neurosci.20123251602161110.1523/JNEUROSCI.5601‑11.2012 22302802
    [Google Scholar]
  73. GillardonF. SchmidR. DraheimH. Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity.Neuroscience2012208414810.1016/j.neuroscience.2012.02.001 22342962
    [Google Scholar]
  74. FellnerL. IrschickR. SchandaK. Toll‐like receptor 4 is required for α‐synuclein dependent activation of microglia and astroglia.Glia201361334936010.1002/glia.22437 23108585
    [Google Scholar]
  75. KimC. HoD.H. SukJ.E. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia.Nat. Commun.201341156210.1038/ncomms2534 23463005
    [Google Scholar]
  76. RastegarA.D. HughesL.P. PereraG. Effect of LRRK2 protein and activity on stimulated cytokines in human monocytes and macrophages.NPJ Parkinsons Dis.2022813410.1038/s41531‑022‑00297‑9 35347144
    [Google Scholar]
  77. MaekawaT. SasaokaT. AzumaS. Leucine-rich repeat kinase 2 (LRRK2) regulates α-synuclein clearance in microglia.BMC Neurosci.20161717710.1186/s12868‑016‑0315‑2 27903237
    [Google Scholar]
  78. AhnT.B. LangstonJ.W. AachiV.R. DicksonD.W. Relationship of neighboring tissue and gliosis to α-synuclein pathology in a fetal transplant for Parkinson’s disease.Am. J. Neurodegener. Dis.2012114959 23383381
    [Google Scholar]
  79. FellnerL. StefanovaN. The role of glia in α-synucleinopathies.Mol. Neurobiol.201347257558610.1007/s12035‑012‑8340‑3 22941028
    [Google Scholar]
  80. TiwariP.C. PalR. The potential role of neuroinflammation and transcription factors in Parkinson disease.Dialogues Clin. Neurosci.2017191718010.31887/DCNS.2017.19.1/rpal 28566949
    [Google Scholar]
  81. RussoI. BertiG. PlotegherN. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells.J. Neuroinflammation201512123010.1186/s12974‑015‑0449‑7 26646749
    [Google Scholar]
  82. HoD.H. SeolW. EunJ.H. SonI. Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity.Biochem. Biophys. Res. Commun.201748241088109410.1016/j.bbrc.2016.11.163 27914807
    [Google Scholar]
  83. RavintherA.I. DewadasH.D. TongS.R. Molecular pathways involved in LRRK2-linked Parkinson’s disease: A systematic review.Int. J. Mol. Sci.202223191174410.3390/ijms231911744 36233046
    [Google Scholar]
  84. BrockmannK. ApelA. SchulteC. Inflammatory profile in LRRK2-associated prodromal and clinical PD.J. Neuroinflammation201613112210.1186/s12974‑016‑0588‑5 27220776
    [Google Scholar]
  85. LuermanG.C. NguyenC. SamarooH. Phosphoproteomic evaluation of pharmacological inhibition of leucine‐ rich repeat kinase 2 reveals significant off‐target effects of LRRK ‐2‐ IN ‐1.J. Neurochem.2014128456157610.1111/jnc.12483 24117733
    [Google Scholar]
  86. LiuG.H. QuJ. SuzukiK. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2.Nature2012491742560360710.1038/nature11557 23075850
    [Google Scholar]
  87. PurlyteE. DhekneH.S. SarhanA.R. Rab29 activation of the Parkinson’s disease‐associated LRRK2 kinase.EMBO J.201837111810.15252/embj.201798099 29212815
    [Google Scholar]
  88. ChanS.L. TanE.K. Targeting LRRK2 in Parkinson’s disease: An update on recent developments.Expert Opin. Ther. Targets201721660161010.1080/14728222.2017.1323881 28443359
    [Google Scholar]
  89. EstradaA.A. ChanB.K. Baker-GlennC. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors.J. Med. Chem.201457392193610.1021/jm401654j 24354345
    [Google Scholar]
  90. ChoiH.G. ZhangJ. DengX. Brain penetrant LRRK2 inhibitor.ACS Med. Chem. Lett.20123865866210.1021/ml300123a 23066449
    [Google Scholar]
  91. HatcherJ.M. ZhangJ. ChoiH.G. ItoG. AlessiD.R. GrayN.S. Discovery of a pyrrolopyrimidine (JH-II-127), a highly potent, selective, and brain penetrant LRRK2 inhibitor.ACS Med. Chem. Lett.20156558458910.1021/acsmedchemlett.5b00064 26005538
    [Google Scholar]
  92. EstradaA.A. LiuX. Baker-GlennC. Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors.J. Med. Chem.201255229416943310.1021/jm301020q 22985112
    [Google Scholar]
  93. FujiR.N. FlagellaM. BacaM. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung.Sci. Transl. Med.20157273273ra1510.1126/scitranslmed.aaa3634 25653221
    [Google Scholar]
  94. HendersonJ.L. KormosB.L. HaywardM.M. Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor.J. Med. Chem.201558141943210.1021/jm5014055 25353650
    [Google Scholar]
  95. FellM.J. MirescuC. BasuK. MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition.J. Pharmacol. Exp. Ther.2015355339740910.1124/jpet.115.227587 26407721
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273377507250320035243
Loading
/content/journals/cnsnddt/10.2174/0118715273377507250320035243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test