Skip to content
2000
image of The NLRP3-P2X7 Axis and Cytokine Crosstalk in Alzheimer's Disease: Mechanisms, Implications, and Therapeutic Opportunities

Abstract

Alzheimer's disease (AD) is the primary cause of dementia in elderly individuals, characterized by progressive memory loss, cognitive decline, and impaired daily functioning. Pathologically, AD is associated with the accumulation of amyloid-β (Aβ) plaques, tau tangles, mitochondrial dysfunction, and chronic neuroinflammation. The activation of the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome by Aβ clusters triggers microglial activation, leading to a cascade of inflammatory responses. Similarly, tau tangles stimulate neuronal and glial cells, further amplifying NLRP3 activation and perpetuating a cycle of chronic inflammation. Mitochondrial dysfunction exacerbates this process by increasing oxidative stress and inflammasome activation. Additionally, purinergic receptor P2X7 (P2X7R) activation in microglia plays a crucial role in initiating neuroinflammation, making it a potential therapeutic target. Despite extensive research, current AD therapies remain symptomatic rather than disease-modifying. Targeting the NLRP3 inflammasome offers a promising strategy for mitigating AD progression. Various small-molecule inhibitors, monoclonal antibodies, and repurposed drugs have been explored to inhibit NLRP3 activation and its downstream signaling pathways. Preclinical studies suggest that NLRP3 inhibitors effectively reduce Aβ- and tau-induced neuroinflammation while improving mitochondrial function and overall neuronal survival. This review summarizes NLRP3 inflammasome priming, activation, and the therapeutic potential of its inhibitors in AD, highlighting challenges such as tau pathology, biomarker limitations, and treatment optimization. While NLRP3 remains a promising target, most inhibitors are in the early stages with uncertain long-term efficacy and BBB penetration. Future research should explore genetic variability, sex differences, and alternative approaches to enhance neuroprotective strategies.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273377780250505115039
2025-05-21
2025-09-30
Loading full text...

Full text loading...

References

  1. Uwishema O. Mahmoud A. Sun J. Correia I.F.S. Bejjani N. Alwan M. Nicholas A. Oluyemisi A. Dost B. Is Alzheimer’s disease an infectious neurological disease? A review of the literature. Brain Behav. 2022 12 8 e2728 10.1002/brb3.2728 35879909
    [Google Scholar]
  2. Kim Y. Lim J. Oh J. Taming neuroinflammation in Alzheimer’s disease: The protective role of phytochemicals through the gut−brain axis. Biomed. Pharmacother. 2024 178 117277 10.1016/j.biopha.2024.117277 39126772
    [Google Scholar]
  3. Zivari-Ghader T. Valioglu F. Eftekhari A. Aliyeva I. Beylerli O. Davran S. Cho W.C. Beilerli A. Khalilov R. Javadov S. Recent progresses in natural based therapeutic materials for Alzheimer’s disease. Heliyon 2024 10 4 e26351 10.1016/j.heliyon.2024.e26351 38434059
    [Google Scholar]
  4. Knopman D.S. Amieva H. Petersen R.C. Chételat G. Holtzman D.M. Hyman B.T. Nixon R.A. Jones D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021 7 1 33 10.1038/s41572‑021‑00269‑y 33986301
    [Google Scholar]
  5. Guo T. Zhang D. Zeng Y. Huang T.Y. Xu H. Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 2020 15 1 40 10.1186/s13024‑020‑00391‑7 32677986
    [Google Scholar]
  6. Ayodele T. Rogaeva E. Kurup J.T. Beecham G. Reitz C. Early-onset Alzheimer’s disease: What is missing in research? Curr. Neurol. Neurosci. Rep. 2021 21 2 4 10.1007/s11910‑020‑01090‑y 33464407
    [Google Scholar]
  7. World Alzheimer report 2023. 2023 Available from: https://www.alzint.org/u/World-Alzheimer-Report-2023.pdf
  8. Lee J. Meijer E. Langa K.M. Ganguli M. Varghese M. Banerjee J. Khobragade P. Angrisani M. Kurup R. Chakrabarti S.S. Gambhir I.S. Koul P.A. Goswami D. Talukdar A. Mohanty R.R. Yadati R.S. Padmaja M. Sankhe L. Rajguru C. Gupta M. Kumar G. Dhar M. Chatterjee P. Singhal S. Bansal R. Bajpai S. Desai G. Rao A.R. Sivakumar P.T. Muliyala K.P. Bhatankar S. Chattopadhyay A. Govil D. Pedgaonkar S. Sekher T.V. Bloom D.E. Crimmins E.M. Dey A.B. Prevalence of dementia in India: National and state estimates from a nationwide study. Alzheimers Dement. 2023 19 7 2898 2912 10.1002/alz.12928 36637034
    [Google Scholar]
  9. Reed E.G. Keller-Norrell P.R. Minding the gap: Exploring neuroinflammatory and microglial sex differences in Alzheimer’s disease. Int. J. Mol. Sci. 2023 24 24 17377 10.3390/ijms242417377 38139206
    [Google Scholar]
  10. Mishra P.S. Mishra R. Kumar A. Comprehensive review on Alzheimer’s disease: Natural therapeutics, gaps and challenges. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 24 10.2174/0118715249307525240614073143 38939998
    [Google Scholar]
  11. Bhandarkar A. Naik P. Vakkund K. Junjappanavar S. Bakare S. Pattar S. Deep learning based computer aided diagnosis of Alzheimer’s disease: A snapshot of last 5 years, gaps, and future directions. Artif. Intell. Rev. 2024 57 2 30 10.1007/s10462‑023‑10644‑8
    [Google Scholar]
  12. Babulal G.M. Zha W. Trani J.F. Guerra J.L. Tee B.L. Zhu Y. Chen Y. Chen L. Bubu M. Josephy-Hernandez S. Wandera S. Karanja W. Ellajosyula R. Caramelli P. Identifying gaps and barriers in Alzheimer’s disease and related dementia research and management in low- and middle-income countries: A survey of health professionals and researchers. J. Alzheimers Dis. 2024 101 4 1307 1320 10.3233/JAD‑240650 39302373
    [Google Scholar]
  13. Parikh N.H. Parikh P.K. Rao H.J. Shah K. Dave B.P. Prajapati B.G. Current trends and updates in the treatment of Alzheimer’s disease. Alzheimer’s Disease and Advanced Drug Delivery Strategies. Elsevier 2024 373 390 10.1016/B978‑0‑443‑13205‑6.00014‑5
    [Google Scholar]
  14. Abeysinghe A.A.D.T. Deshapriya R.D.U.S. Udawatte C. Alzheimer’s disease; A review of the pathophysiological basis and therapeutic interventions. Life Sci. 2020 256 117996 10.1016/j.lfs.2020.117996 32585249
    [Google Scholar]
  15. Perneczky R. Dom G. Chan A. Falkai P. Bassetti C. Anti‐amyloid antibody treatments for Alzheimer’s disease. Eur. J. Neurol. 2024 31 2 e16049 10.1111/ene.16049 37697714
    [Google Scholar]
  16. Cummings J. Osse A.M.L. Cammann D. Powell J. Chen J. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. BioDrugs 2024 38 1 5 22 10.1007/s40259‑023‑00633‑2 37955845
    [Google Scholar]
  17. Budd Haeberlein S. Aisen P.S. Barkhof F. Chalkias S. Chen T. Cohen S. Dent G. Hansson O. Harrison K. von Hehn C. Iwatsubo T. Mallinckrodt C. Mummery C.J. Muralidharan K.K. Nestorov I. Nisenbaum L. Rajagovindan R. Skordos L. Tian Y. van Dyck C.H. Vellas B. Wu S. Zhu Y. Sandrock A. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 2022 9 2 197 210 10.14283/jpad.2022.30 35542991
    [Google Scholar]
  18. Swanson C.J. Zhang Y. Dhadda S. Wang J. Kaplow J. Lai R.Y.K. Lannfelt L. Bradley H. Rabe M. Koyama A. Reyderman L. Berry D.A. Berry S. Gordon R. Kramer L.D. Cummings J.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res. Ther. 2021 13 1 80 10.1186/s13195‑021‑00813‑8 33865446
    [Google Scholar]
  19. van Dyck C.H. Swanson C.J. Aisen P. Bateman R.J. Chen C. Gee M. Kanekiyo M. Li D. Reyderman L. Cohen S. Froelich L. Katayama S. Sabbagh M. Vellas B. Watson D. Dhadda S. Irizarry M. Kramer L.D. Iwatsubo T. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  20. Peng Y. Jin H. Xue Y. Chen Q. Yao S. Du M. Liu S. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks. Front. Aging Neurosci. 2023 15 1206572 10.3389/fnagi.2023.1206572 37600514
    [Google Scholar]
  21. Morgan D.G. Mielke M.M. Knowledge gaps in Alzheimer’s disease immune biomarker research. Alzheimers Dement. 2021 17 12 2030 2042 10.1002/alz.12342 33984178
    [Google Scholar]
  22. ZhuGe D.L. Javaid H.M.A. Sahar N.E. Zhao Y.Z. Huh J.Y. Fibroblast growth factor 2 exacerbates inflammation in adipocytes through NLRP3 inflammasome activation. Arch. Pharm. Res. 2020 43 12 1311 1324 10.1007/s12272‑020‑01295‑2 33245516
    [Google Scholar]
  23. McManus R.M. Latz E. NLRP3 inflammasome signalling in Alzheimer’s disease. Neuropharmacology 2024 252 109941 10.1016/j.neuropharm.2024.109941 38565393
    [Google Scholar]
  24. Vejandla B. Savani S. Appalaneni R. Veeravalli R.S. Gude S.S. Alzheimer’s disease: The past, present, and future of a globally progressive disease. Cureus 2024 16 1 e51705 10.7759/cureus.51705 38313929
    [Google Scholar]
  25. Kurkinen M. Fułek M. Fułek K. Beszłej J.A. Kurpas D. Leszek J. The amyloid cascade hypothesis in Alzheimer’s disease: Should we change our thinking? Biomolecules 2023 13 3 453 10.3390/biom13030453 36979388
    [Google Scholar]
  26. Sita G. Graziosi A. Hrelia P. Morroni F. NLRP3 and infections: β-Amyloid in inflammasome beyond neurodegeneration. Int. J. Mol. Sci. 2021 22 13 6984 10.3390/ijms22136984 34209586
    [Google Scholar]
  27. Roy R.G. Mandal P.K. Maroon J.C. Oxidative stress occurs prior to amyloid Aβ plaque formation and tau phosphorylation in Alzheimer’s disease: Role of glutathione and metal ions. ACS Chem. Neurosci. 2023 14 17 2944 2954 10.1021/acschemneuro.3c00486 37561556
    [Google Scholar]
  28. Nasb M. Tao W. Chen N. Alzheimer’s disease puzzle: Delving into pathogenesis hypotheses. Aging Dis. 2024 15 1 43 73 37450931
    [Google Scholar]
  29. Song L. Wells E.A. Robinson A.S. Critical molecular and cellular contributors to tau pathology. Biomedicines 2021 9 2 190 10.3390/biomedicines9020190 33672982
    [Google Scholar]
  30. Nunnari J. Suomalainen A. Mitochondria: In sickness and in health. Cell 2012 148 6 1145 1159 10.1016/j.cell.2012.02.035 22424226
    [Google Scholar]
  31. Reiss A.B. Gulkarov S. Jacob B. Srivastava A. Pinkhasov A. Gomolin I.H. Stecker M.M. Wisniewski T. De Leon J. Mitochondria in Alzheimer’s disease pathogenesis. Life 2024 14 2 196 10.3390/life14020196 38398707
    [Google Scholar]
  32. Litwiniuk A. Baranowska-Bik A. Domańska A. Kalisz M. Bik W. Contribution of mitochondrial dysfunction combined with NLRP3 inflammasome activation in selected neurodegenerative diseases. Pharmaceuticals 2021 14 12 1221 10.3390/ph14121221 34959622
    [Google Scholar]
  33. Wong K.Y. Roy J. Fung M.L. Heng B.C. Zhang C. Lim L.W. Relationships between mitochondrial dysfunction and neurotransmission failure in Alzheimer’s disease. Aging Dis. 2020 11 5 1291 1316 10.14336/AD.2019.1125 33014538
    [Google Scholar]
  34. Rhein V. Song X. Wiesner A. Ittner L.M. Baysang G. Meier F. Ozmen L. Bluethmann H. Dröse S. Brandt U. Savaskan E. Czech C. Götz J. Eckert A. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc. Natl. Acad. Sci. USA 2009 106 47 20057 20062 10.1073/pnas.0905529106 19897719
    [Google Scholar]
  35. Hansson Petersen C.A. Alikhani N. Behbahani H. Wiehager B. Pavlov P.F. Alafuzoff I. Leinonen V. Ito A. Winblad B. Glaser E. Ankarcrona M. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc. Natl. Acad. Sci. USA 2008 105 35 13145 13150 10.1073/pnas.0806192105 18757748
    [Google Scholar]
  36. Swanson K.V. Deng M. Ting J.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019 19 8 477 489 10.1038/s41577‑019‑0165‑0 31036962
    [Google Scholar]
  37. Yang Y. Wang H. Kouadir M. Song H. Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019 10 2 128 10.1038/s41419‑019‑1413‑8 30755589
    [Google Scholar]
  38. Han S. He Z. Jacob C. Hu X. Liang X. Xiao W. Wan L. Xiao P. D’Ascenzo N. Ni J. Liu Q. Xie Q. Effect of increased IL-1β on expression of HK in Alzheimer’s disease. Int. J. Mol. Sci. 2021 22 3 1306 10.3390/ijms22031306 33525649
    [Google Scholar]
  39. Wolf A.J. Reyes C.N. Liang W. Becker C. Shimada K. Wheeler M.L. Cho H.C. Popescu N.I. Coggeshall K.M. Arditi M. Underhill D.M. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 2016 166 3 624 636 10.1016/j.cell.2016.05.076 27374331
    [Google Scholar]
  40. Hughes M.M. O’Neill L.A.J. Metabolic regulation of NLRP 3. Immunol. Rev. 2018 281 1 88 98 10.1111/imr.12608 29247992
    [Google Scholar]
  41. Kelley N. Jeltema D. Duan Y. He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019 20 13 3328 10.3390/ijms20133328 31284572
    [Google Scholar]
  42. Zhong Z. Umemura A. Sanchez-Lopez E. Liang S. Shalapour S. Wong J. He F. Boassa D. Perkins G. Ali S.R. McGeough M.D. Ellisman M.H. Seki E. Gustafsson A.B. Hoffman H.M. Diaz-Meco M.T. Moscat J. Karin M. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016 164 5 896 910 10.1016/j.cell.2015.12.057 26919428
    [Google Scholar]
  43. Novoderezhkina E.A. Zhivotovsky B.D. Gogvadze V.G. Induction of unspecific permeabilization of mitochondrial membrane and its role in cell death. Mol. Biol. 2016 50 1 51 68 27028811
    [Google Scholar]
  44. Han S. He Z. Hu X. Li X. Zheng K. Huang Y. Xiao P. Xie Q. Ni J. Liu Q. Inhibiting NLRP3 inflammasome activation by CY-09 helps to restore cerebral glucose metabolism in 3×Tg-AD mice. Antioxidants 2023 12 3 722 10.3390/antiox12030722 36978970
    [Google Scholar]
  45. Olufunmilayo E.O. Gerke-Duncan M.B. Holsinger R.M.D. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 2023 12 2 517 10.3390/antiox12020517 36830075
    [Google Scholar]
  46. Misrani A. Tabassum S. Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 2021 13 617588 10.3389/fnagi.2021.617588 33679375
    [Google Scholar]
  47. Kowalczyk P. Sulejczak D. Kleczkowska P. Bukowska-Ośko I. Kucia M. Popiel M. Wietrak E. Kramkowski K. Wrzosek K. Kaczyńska K. Mitochondrial oxidative stress—A causative factor and therapeutic target in many diseases. Int. J. Mol. Sci. 2021 22 24 13384 10.3390/ijms222413384 34948180
    [Google Scholar]
  48. Tobore T.O. On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurol. Sci. 2019 40 8 1527 1540 10.1007/s10072‑019‑03863‑x 30982132
    [Google Scholar]
  49. Yang T. Zhang L. Shang Y. Zhu Z. Jin S. Guo Z. Wang X. Concurrent suppression of Aβ aggregation and NLRP3 inflammasome activation for treating Alzheimer’s disease. Chem. Sci. 2022 13 10 2971 2980 10.1039/D1SC06071F 35382471
    [Google Scholar]
  50. Uoselis L. Nguyen T.N. Lazarou M. Mitochondrial degradation: Mitophagy and beyond. Mol. Cell 2023 83 19 3404 3420 10.1016/j.molcel.2023.08.021 37708893
    [Google Scholar]
  51. Pradeepkiran J.A. Baig J. Selman A. Reddy P.H. Mitochondria in aging and Alzheimer’s disease: Focus on mitophagy. Neuroscientist 2023 30 4 440 457 10.1177/10738584221139761 36597577
    [Google Scholar]
  52. Sharma B. Pal D. Sharma U. Kumar A. Mitophagy: An emergence of new player in Alzheimer’s disease. Front. Mol. Neurosci. 2022 15 921908 10.3389/fnmol.2022.921908 35875669
    [Google Scholar]
  53. Kim M.J. Yoon J.H. Ryu J.H. Mitophagy: A balance regulator of NLRP3 inflammasome activation. BMB Rep. 2016 49 10 529 535 10.5483/BMBRep.2016.49.10.115 27439607
    [Google Scholar]
  54. Kim M.J. Bae S.H. Ryu J.C. Kwon Y. Oh J.H. Kwon J. Moon J.S. Kim K. Miyawaki A. Lee M.G. Shin J. Kim Y.S. Kim C.H. Ryter S.W. Choi A.M.K. Rhee S.G. Ryu J.H. Yoon J.H. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 2016 12 8 1272 1291 10.1080/15548627.2016.1183081 27337507
    [Google Scholar]
  55. Blagov A.V. Grechko A.V. Nikiforov N.G. Borisov E.E. Sadykhov N.K. Orekhov A.N. Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 13 6954 10.3390/ijms23136954 35805958
    [Google Scholar]
  56. Yang D. Ying J. Wang X. Zhao T. Yoon S. Fang Y. Zheng Q. Liu X. Yu W. Hua F. Mitochondrial dynamics: A key role in neurodegeneration and a potential target for neurodegenerative disease. Front. Neurosci. 2021 15 654785 10.3389/fnins.2021.654785 33912006
    [Google Scholar]
  57. Guha S. Johnson G.V.W. Nehrke K. The crosstalk between pathological tau phosphorylation and mitochondrial dysfunction as a key to understanding and treating Alzheimer’s disease. Mol. Neurobiol. 2020 57 12 5103 5120 10.1007/s12035‑020‑02084‑0 32851560
    [Google Scholar]
  58. Bhatia S. Rawal R. Sharma P. Singh T. Singh M. Singh V. Mitochondrial dysfunction in Alzheimer’s disease: Opportunities for drug development. Curr. Neuropharmacol. 2022 20 4 675 692 10.2174/1570159X19666210517114016 33998995
    [Google Scholar]
  59. Wang X. Xue Y. Yao Y. Li Y. Ji X. Chi T. Liu P. Zou L. PINK1 regulates mitochondrial fission/fusion and neuroinflammation in β-amyloid-induced Alzheimer’s disease models. Neurochem. Int. 2022 154 105298 10.1016/j.neuint.2022.105298 35134462
    [Google Scholar]
  60. Lindsay H.G. Hendrix C.J. Gonzalez Murcia J.D. Haynie C. Weber K.S. The role of atypical chemokine receptors in neuroinflammation and neurodegenerative disorders. Int. J. Mol. Sci. 2023 24 22 16493 10.3390/ijms242216493 38003682
    [Google Scholar]
  61. Vainchtein I.D. Molofsky A.V. Astrocytes and microglia: In sickness and in health. Trends Neurosci. 2020 43 3 144 154 10.1016/j.tins.2020.01.003 32044129
    [Google Scholar]
  62. Calsolaro V. Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016 12 6 719 732 10.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  63. Agrawal M. Singhal M. Prajapati B.G. Chaudhary H. Jasoria Y. Kumar B. Neuroinflammation in Alzheimer’s disease. Alzheimer’s Disease and Advanced Drug Delivery Strategies. Elsevier 2024 13 32 10.1016/B978‑0‑443‑13205‑6.00003‑0
    [Google Scholar]
  64. Konsman J. Cytokines in the brain and neuroinflammation: We didn’t starve the fire! Pharmaceuticals 2022 15 2 140 10.3390/ph15020140 35215252
    [Google Scholar]
  65. Barczuk J. Siwecka N. Lusa W. Rozpędek-Kamińska W. Kucharska E. Majsterek I. Targeting NLRP3-mediated neuroinflammation in Alzheimer’s disease treatment. Int. J. Mol. Sci. 2022 23 16 8979 10.3390/ijms23168979 36012243
    [Google Scholar]
  66. Tang H. Harte M. Investigating markers of the NLRP3 inflammasome pathway in Alzheimer’s disease: A human post-mortem study. Genes 2021 12 11 1753 10.3390/genes12111753 34828359
    [Google Scholar]
  67. Arango Duque G. Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014 5 491 10.3389/fimmu.2014.00491 25339958
    [Google Scholar]
  68. Finkelman F.D. Holmes J. Katona I.M. Urban J.F. Jr Beckmann M.P. Park L.S. Schooley K.A. Coffman R.L. Mosmann T.R. Paul W.E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 1990 8 1 303 333 10.1146/annurev.iy.08.040190.001511 1693082
    [Google Scholar]
  69. Su F. Bai F. Zhang Z. Inflammatory cytokines and alzheimer’s disease: A review from the perspective of genetic polymorphisms. Neurosci. Bull. 2016 32 5 469 480 10.1007/s12264‑016‑0055‑4 27568024
    [Google Scholar]
  70. Mamsa R. Prabhavalkar K.S. Bhatt L.K. Crosstalk between NLRP3 inflammasome and calpain in Alzheimer’s disease. Eur. J. Neurosci. 2023 58 7 3719 3731 10.1111/ejn.16139 37652164
    [Google Scholar]
  71. Zhang Y. Dong Z. Song W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer’s disease. Signal Transduct. Target. Ther. 2020 5 1 37 10.1038/s41392‑020‑0145‑7 32296063
    [Google Scholar]
  72. McManus R.M. Komes M.P. Griep A. Santarelli F. Schwartz S. Khalil M.A. Lauterbach M. Gomez-Cabrero D. Tegner J. Hiller K. Latz E. Heneka M.T. NLRP3 regulates microglial metabolic function in Alzheimer’s disease. Alzheimers Dement. 2022 18 S4 e065598 10.1002/alz.065598
    [Google Scholar]
  73. Van Zeller M. Dias D. Sebastião A.M. Valente C.A. NLRP3 inflammasome: A starring role in amyloid-β- and tau-driven pathological events in Alzheimer’s disease. J. Alzheimers Dis. 2021 83 3 939 961 10.3233/JAD‑210268 34366341
    [Google Scholar]
  74. Akdis M. Aab A. Altunbulakli C. Azkur K. Costa R.A. Crameri R. Duan S. Eiwegger T. Eljaszewicz A. Ferstl R. Frei R. Garbani M. Globinska A. Hess L. Huitema C. Kubo T. Komlosi Z. Konieczna P. Kovacs N. Kucuksezer U.C. Meyer N. Morita H. Olzhausen J. O’Mahony L. Pezer M. Prati M. Rebane A. Rhyner C. Rinaldi A. Sokolowska M. Stanic B. Sugita K. Treis A. van de Veen W. Wanke K. Wawrzyniak M. Wawrzyniak P. Wirz O.F. Zakzuk J.S. Akdis C.A. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2016 138 4 984 1010 10.1016/j.jaci.2016.06.033 27577879
    [Google Scholar]
  75. Griffin W.S.T. Sheng J.G. Royston M.C. Gentleman S.M. McKenzie J.E. Graham D.I. Roberts G.W. Mrak R.E. Glial-neuronal interactions in Alzheimer’s disease: The potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol. 1998 8 1 65 72 10.1111/j.1750‑3639.1998.tb00136.x 9458167
    [Google Scholar]
  76. Mrak R. Griffin W.S. Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol. Aging 2001 22 6 903 908 10.1016/S0197‑4580(01)00287‑1 11754997
    [Google Scholar]
  77. Avital A. Goshen I. Kamsler A. Segal M. Iverfeldt K. Richter-Levin G. Yirmiya R. Impaired interleukin‐1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 2003 13 7 826 834 10.1002/hipo.10135 14620878
    [Google Scholar]
  78. Woodroofe M.N. Sarna G.S. Wadhwa M. Hayes G.M. Loughlin A.J. Tinker A. Cuzner M.L. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: Evidence of a role for microglia in cytokine production. J. Neuroimmunol. 1991 33 3 227 236 10.1016/0165‑5728(91)90110‑S 1874973
    [Google Scholar]
  79. Winter C.D. Iannotti F. Pringle A.K. Trikkas C. Clough G.F. Church M.K. A microdialysis method for the recovery of IL-1β, IL-6 and nerve growth factor from human brain in vivo. J. Neurosci. Methods 2002 119 1 45 50 10.1016/S0165‑0270(02)00153‑X 12234634
    [Google Scholar]
  80. Shaftel S.S. Griffin W.S.T. O’Banion M.K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: An evolving perspective. J. Neuroinflammation 2008 5 1 7 10.1186/1742‑2094‑5‑7 18302763
    [Google Scholar]
  81. Rizzo F.R. Musella A. De Vito F. Fresegna D. Bullitta S. Vanni V. Guadalupi L. Stampanoni Bassi M. Buttari F. Mandolesi G. Centonze D. Gentile A. Tumor necrosis factor and interleukin-1 β modulate synaptic plasticity during neuroinflammation. Neural Plast. 2018 2018 1 12 10.1155/2018/8430123 29861718
    [Google Scholar]
  82. Lonnemann N. Hosseini S. Marchetti C. Skouras D.B. Stefanoni D. D’Alessandro A. Dinarello C.A. Korte M. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2020 117 50 32145 32154 10.1073/pnas.2009680117 33257576
    [Google Scholar]
  83. Kerkis I. Silva Á.P. Araldi R.P. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions. Front. Immunol. 2024 15 1400533 10.3389/fimmu.2024.1400533 39015561
    [Google Scholar]
  84. Kistner T.M. Pedersen B.K. Lieberman D.E. Interleukin 6 as an energy allocator in muscle tissue. Nat. Metab. 2022 4 2 170 179 10.1038/s42255‑022‑00538‑4 35210610
    [Google Scholar]
  85. Uciechowski P. Dempke W.C.M. Interleukin-6: A masterplayer in the cytokine network. Oncology 2020 98 3 131 137 10.1159/000505099 31958792
    [Google Scholar]
  86. Rani V. Verma R. Kumar K. Chawla R. Role of pro-inflammatory cytokines in Alzheimer’s disease and neuroprotective effects of pegylated self-assembled nanoscaffolds. Curr. Res. Pharmacol. Drug Discov. 2023 4 100149 10.1016/j.crphar.2022.100149 36593925
    [Google Scholar]
  87. Dursun E. Gezen-Ak D. Hanağası H. Bilgiç B. Lohmann E. Ertan S. Atasoy İ.L. Alaylıoğlu M. Araz Ö.S. Önal B. Gündüz A. Apaydın H. Kızıltan G. Ulutin T. Gürvit H. Yılmazer S. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J. Neuroimmunol. 2015 283 50 57 10.1016/j.jneuroim.2015.04.014 26004156
    [Google Scholar]
  88. Rajesh Y. Kanneganti T.D. Innate immune cell death in neuroinflammation and Alzheimer’s disease. Cells 2022 11 12 1885 10.3390/cells11121885 35741014
    [Google Scholar]
  89. Ihim S.A. Abubakar S.D. Zian Z. Sasaki T. Saffarioun M. Maleknia S. Azizi G. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front. Immunol. 2022 13 919973 10.3389/fimmu.2022.919973 36032110
    [Google Scholar]
  90. Fauteux-Daniel S. Girard-Guyonvarc’h C. Caruso A. Rodriguez E. Gabay C. Detection of free bioactive IL-18 and IL-18BP in inflammatory disorders. Methods Mol Biol 2023 2691 263 277 10.1007/978‑1‑0716‑3331‑1_21 37355553
    [Google Scholar]
  91. Girard-Guyonvarc’h C. Harel M. Gabay C. The role of interleukin 18/Interleukin 18-binding protein in adult-onset still’s disease and systemic juvenile idiopathic arthritis. J. Clin. Med. 2022 11 2 430 10.3390/jcm11020430 35054124
    [Google Scholar]
  92. Detry S. Andries J. Bloch Y. Gabay C. Clancy D.M. Savvides S.N. Structural basis of human IL-18 sequestration by the decoy receptor IL-18 binding protein in inflammation and tumor immunity. J. Biol. Chem. 2022 298 5 101908 10.1016/j.jbc.2022.101908 35398099
    [Google Scholar]
  93. Kaplanski G. Interleukin‐18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018 281 1 138 153 10.1111/imr.12616 29247988
    [Google Scholar]
  94. Sutinen E.M. Korolainen M.A. Häyrinen J. Alafuzoff I. Petratos S. Salminen A. Soininen H. Pirttilä T. Ojala J.O. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells. Front. Cell. Neurosci. 2014 8 214 10.3389/fncel.2014.00214 25147500
    [Google Scholar]
  95. Sutinen E.M. Pirttilä T. Anderson G. Salminen A. Ojala J.O. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J. Neuroinflammation 2012 9 1 199 10.1186/1742‑2094‑9‑199 22898493
    [Google Scholar]
  96. Fresegna D. Bullitta S. Musella A. Rizzo F.R. De Vito F. Guadalupi L. Caioli S. Balletta S. Sanna K. Dolcetti E. Vanni V. Bruno A. Buttari F. Stampanoni Bassi M. Mandolesi G. Centonze D. Gentile A. Re-examining the role of TNF in MS pathogenesis and therapy. Cells 2020 9 10 2290 10.3390/cells9102290 33066433
    [Google Scholar]
  97. Jang D. Lee A.H. Shin H.Y. Song H.R. Park J.H. Kang T.B. Lee S.R. Yang S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021 22 5 2719 10.3390/ijms22052719 33800290
    [Google Scholar]
  98. Gonzalez Caldito N. Role of tumor necrosis factor-alpha in the central nervous system: A focus on autoimmune disorders. Front. Immunol. 2023 14 1213448 10.3389/fimmu.2023.1213448 37483590
    [Google Scholar]
  99. Olmos G. Lladó J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014 2014 1 12 10.1155/2014/861231 24966471
    [Google Scholar]
  100. Plantone D. Pardini M. Righi D. Manco C. Colombo B.M. De Stefano N. The role of TNF-α in Alzheimer’s disease: A narrative review. Cells 2023 13 1 54 10.3390/cells13010054 38201258
    [Google Scholar]
  101. Cheng X. Yang L. He P. Li R. Shen Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. J. Alzheimers Dis. 2010 19 2 621 630 10.3233/JAD‑2010‑1253 20110607
    [Google Scholar]
  102. Li R. Yang L. Lindholm K. Konishi Y. Yue X. Hampel H. Zhang D. Shen Y. Tumor necrosis factor death receptor signaling cascade is required for amyloid-β protein-induced neuron death. J. Neurosci. 2004 24 7 1760 1771 10.1523/JNEUROSCI.4580‑03.2004 14973251
    [Google Scholar]
  103. He P. Zhong Z. Lindholm K. Berning L. Lee W. Lemere C. Staufenbiel M. Li R. Shen Y. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol. 2007 178 5 829 841 10.1083/jcb.200705042 17724122
    [Google Scholar]
  104. Montgomery S.L. Narrow W.C. Mastrangelo M.A. Olschowka J.A. O’Banion M.K. Bowers W.J. Chronic neuron- and age-selective down-regulation of TNF receptor expression in triple-transgenic Alzheimer disease mice leads to significant modulation of amyloid- and Tau-related pathologies. Am. J. Pathol. 2013 182 6 2285 2297 10.1016/j.ajpath.2013.02.030 23567638
    [Google Scholar]
  105. Culjak M. Perkovic M.N. Uzun S. Strac D.S. Erjavec G.N. Leko M.B. Simic G. Tudor L. Konjevod M. Kozumplik O. Mimica N. Pivac N. The association between TNF-alpha, IL-1 alpha and IL-10 with Alzheimer’s disease. Curr. Alzheimer Res. 2021 17 11 972 984 10.2174/1567205017666201130092427 33256580
    [Google Scholar]
  106. Han C. Sheng Y. Wang J. Zhou X. Li W. Zhang C. Guo L. Yang Y. Double‐negative T cells mediate M1 polarization of microglial cells via TNF‐α‐NLRP3 to aggravate neuroinflammation and cognitive impairment in Alzheimer’s disease mice. J. Cell. Physiol. 2022 237 10 3860 3871 10.1002/jcp.30839 35866513
    [Google Scholar]
  107. Torres-Acosta N. O’Keefe J.H. O’Keefe E.L. Isaacson R. Small G. Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention. J. Alzheimers Dis. 2020 78 2 619 626 10.3233/JAD‑200711 33016914
    [Google Scholar]
  108. Kummer K.K. Zeidler M. Kalpachidou T. Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine 2021 144 155582 10.1016/j.cyto.2021.155582 34058569
    [Google Scholar]
  109. Xie L. Lai Y. Lei F. Liu S. Liu R. Wang T. Exploring the association between interleukin-1β and its interacting proteins in Alzheimer’s disease. Mol. Med. Rep. 2015 11 5 3219 3228 10.3892/mmr.2015.3183 25585621
    [Google Scholar]
  110. Conti B. Park L.C.H. Calingasan N.Y. Kim Y. Kim H. Bae Y. Gibson G.E. Joh T.H. Cultures of astrocytes and microglia express interleukin 18. Brain Res. Mol. Brain Res. 1999 67 1 46 52 10.1016/S0169‑328X(99)00034‑0 10101231
    [Google Scholar]
  111. Papadimitriou C. Celikkaya H. Cosacak M.I. Mashkaryan V. Bray L. Bhattarai P. Brandt K. Hollak H. Chen X. He S. Antos C.L. Lin W. Thomas A.K. Dahl A. Kurth T. Friedrichs J. Zhang Y. Freudenberg U. Werner C. Kizil C. 3D culture method for Alzheimer’s disease modeling reveals interleukin-4 rescues Aβ42-Induced loss of human neural stem cell plasticity. Dev. Cell 2018 46 1 85 101.e8 10.1016/j.devcel.2018.06.005 29974866
    [Google Scholar]
  112. Soosanabadi M. Bayat H. Kamali K. Saliminejad K. Banan M. Khorram Khorshid H. Association study of IL-4 -590 C/T and DDX39B -22 G/C polymorphisms with the risk of late-onset Alzheimer’s disease in Iranian population. Curr. Aging Sci. 2015 8 3 276 281 10.2174/187460980803151027125919 26265379
    [Google Scholar]
  113. Papadimitriou C. Celikkaya H. Ilyas Cosacak M. Bhattarai P. Lin W. Kuriakose Thomas A. Interleukin-4 restores neurogenic plasticity of the primary human neural stem cells through suppression of Kynurenic acid production upon Amyloid-beta42 toxicity. Preprint 2017 10.1101/227306
    [Google Scholar]
  114. Shimizu E. Kawahara K. Kajizono M. Sawada M. Nakayama H. IL-4-induced selective clearance of oligomeric β-amyloid peptide(1-42) by rat primary type 2 microglia. J. Immunol. 2008 181 9 6503 6513 10.4049/jimmunol.181.9.6503 18941241
    [Google Scholar]
  115. Kawahara K. Suenobu M. Yoshida A. Koga K. Hyodo A. Ohtsuka H. Kuniyasu A. Tamamaki N. Sugimoto Y. Nakayama H. Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience 2012 207 243 260 10.1016/j.neuroscience.2012.01.049 22342341
    [Google Scholar]
  116. Kiyota T. Okuyama S. Swan R.J. Jacobsen M.T. Gendelman H.E. Ikezu T. CNS expression of anti‐inflammatory cytokine interleukin‐4 attenuates Alzheimer’s disease‐like pathogenesis in APP+PS1 bigenic mice. FASEB J. 2010 24 8 3093 3102 10.1096/fj.10‑155317 20371618
    [Google Scholar]
  117. Mashkaryan V. Siddiqui T. Popova S. Cosacak M.I. Bhattarai P. Brandt K. Govindarajan N. Petzold A. Reinhardt S. Dahl A. Lefort R. Kizil C. Type 1 interleukin-4 signaling obliterates mouse astroglia in vivo but Not in vitro. Front. Cell Dev. Biol. 2020 8 114 10.3389/fcell.2020.00114 32181251
    [Google Scholar]
  118. Dionisio-Santos D.A. Behrouzi A. Olschowka J.A. O’Banion M.K. Evaluating the effect of interleukin-4 in the 3xTg mouse model of Alzheimer’s disease. Front. Neurosci. 2020 14 441 10.3389/fnins.2020.00441 32528242
    [Google Scholar]
  119. Szczepanik A. Funes S. Petko W. Ringheim G.E. IL-4, IL-10 and IL-13 modulate Aβ(1–42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J. Neuroimmunol. 2001 113 1 49 62 10.1016/S0165‑5728(00)00404‑5 11137576
    [Google Scholar]
  120. Strle K. Zhou J.H. Shen W.H. Broussard S.R. Johnson R.W. Freund G.G. Dantzer R. Kelley K.W. Interleukin-10 in the brain. Crit. Rev. Immunol. 2001 21 5 427 449 11942558
    [Google Scholar]
  121. D’Anna L. Abu-Rumeileh S. Fabris M. Pistis C. Baldi A. Sanvilli N. Curcio F. Gigli G.L. D’Anna S. Valente M. Serum interleukin-10 levels correlate with cerebrospinal fluid amyloid beta deposition in Alzheimer disease patients. Neurodegener. Dis. 2017 17 4-5 227 234 10.1159/000474940 28719891
    [Google Scholar]
  122. Sanchez-Molina P. Almolda B. Giménez-Llort L. González B. Castellano B. Chronic IL-10 overproduction disrupts microglia-neuron dialogue similar to aging, resulting in impaired hippocampal neurogenesis and spatial memory. Brain Behav. Immun. 2022 101 231 245 10.1016/j.bbi.2021.12.026 34990747
    [Google Scholar]
  123. Porro C. Cianciulli A. Panaro M.A. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 2020 10 7 1017 10.3390/biom10071017 32659950
    [Google Scholar]
  124. Carlini V. Noonan D.M. Abdalalem E. Goletti D. Sansone C. Calabrone L. Albini A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023 14 1161067 10.3389/fimmu.2023.1161067 37359549
    [Google Scholar]
  125. Zheng C. Zhou X.W. Wang J.Z. The dual roles of cytokines in Alzheimer’s disease: Update on interleukins, TNF-α, TGF-β and IFN-γ. Transl. Neurodegener. 2016 5 1 7 10.1186/s40035‑016‑0054‑4 27054030
    [Google Scholar]
  126. Cacquevel M. Lebeurrier N. Chéenne S. Vivien D. Cytokines in neuroinflammation and Alzheimer’s disease. Curr. Drug Targets 2004 5 6 529 534 10.2174/1389450043345308 15270199
    [Google Scholar]
  127. Hu Y. Chen W. Wu L. Jiang L. Liang N. Tan L. Liang M. Tang N. TGF-β1 restores hippocampal synaptic plasticity and memory in Alzheimer model via the PI3K/Akt/Wnt/β-Catenin signaling pathway. J. Mol. Neurosci. 2019 67 1 142 149 10.1007/s12031‑018‑1219‑7 30539409
    [Google Scholar]
  128. Fang X.X. Sun G.L. Zhou Y. Qiu Y.H. Peng Y.P. TGF-β1 protection against Aβ1–42-induced hippocampal neuronal inflammation and apoptosis by TβR-I. Neuroreport 2018 29 2 141 146 10.1097/WNR.0000000000000940 29200096
    [Google Scholar]
  129. Ponomarev E.D. Maresz K. Tan Y. Dittel B.N. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci. 2007 27 40 10714 10721 10.1523/JNEUROSCI.1922‑07.2007 17913905
    [Google Scholar]
  130. Boccardi V. Westman E. Pelini L. Lindberg O. Muehlboeck J.S. Simmons A. Tarducci R. Floridi P. Chiarini P. Soininen H. Kloszewska I. Tsolaki M. Vellas B. Spenger C. Wahlund L.O. Lovestone S. Mecocci P. Differential associations of IL-4 with hippocampal subfields in mild cognitive impairment and Alzheimer’s disease. Front. Aging Neurosci. 2019 10 439 10.3389/fnagi.2018.00439 30705627
    [Google Scholar]
  131. Burmeister A.R. Marriott I. The interleukin-10 family of cytokines and their role in the CNS. Front. Cell. Neurosci. 2018 12 458 10.3389/fncel.2018.00458 30542269
    [Google Scholar]
  132. Guillot-Sestier M.V. Doty K.R. Gate D. Rodriguez J. Jr Leung B.P. Rezai-Zadeh K. Town T. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 2015 85 3 534 548 10.1016/j.neuron.2014.12.068 25619654
    [Google Scholar]
  133. Villapol S. Role of TGF-β Signaling in Neurogenic Regions After Brain Injury. Trends in Cell Signaling Pathways in Neuronal Fate Decision. InTech 2013 10.5772/53941
    [Google Scholar]
  134. Kapoor M. Chinnathambi S. TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: A specialized Tau perspective. J. Neuroinflammation 2023 20 1 72 10.1186/s12974‑023‑02751‑8 36915196
    [Google Scholar]
  135. Nizami S. Hall-Roberts H. Warrier S. Cowley S.A. Di Daniel E. Microglial inflammation and phagocytosis in Alzheimer’s disease: Potential therapeutic targets. Br. J. Pharmacol. 2019 176 18 3515 3532 10.1111/bph.14618 30740661
    [Google Scholar]
  136. Brogan P.A. Hofer M. Kuemmerle-Deschner J.B. Koné-Paut I. Roesler J. Kallinich T. Horneff G. Calvo Penadés I. Sevilla-Perez B. Goffin L. Lauwerys B.R. Lachmann H.J. Uziel Y. Wei X. Laxer R.M. Rapid and sustained long‐term efficacy and safety of canakinumab in patients with cryopyrin‐associated periodic syndrome ages five years and younger. Arthritis Rheumatol. 2019 71 11 1955 1963 10.1002/art.41004 31161734
    [Google Scholar]
  137. Efficacy, safety and tolerability of ACZ885 in pediatric patients with the following cryopyrin-associated periodic syndromes: Familial cold autoinflammatory syndrome, muckle-wells syndrome, or neonatal onset multisystem inflammatory disease. Patent NCT01576367 2018
  138. Melchiorri D. Merlo S. Micallef B. Borg J.J. Dráfi F. Alzheimer’s disease and neuroinflammation: Will new drugs in clinical trials pave the way to a multi-target therapy? Front. Pharmacol. 2023 14 1196413 10.3389/fphar.2023.1196413 37332353
    [Google Scholar]
  139. Study of the efficacy and safety of various anti-inflammatory agents in participants with mild cognitive impairment or mild Alzheimer's disease. Patent NCT04795466 2024
  140. Bartfai T. Lees G.V. Alzheimer Drug Trials: Combination of Safe and efficacious biologicals to break the amyloidosis-neuroinflammation vicious cycle. ASN Neuro 2020 12 1 1759091420918557 10.1177/1759091420918557 32290675
    [Google Scholar]
  141. Interleukin-1 receptor antagonist (IL-1RA) (anakinra) in severe systemic-onset juvenile idiopathic arthritis. Patent NCT00339157 2010
  142. Voet S. Srinivasan S. Lamkanfi M. van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol. Med. 2019 11 6 e10248 10.15252/emmm.201810248 31015277
    [Google Scholar]
  143. Rilonacept for treatment of cryopyrin-associated periodic syndromes (CAPS). Patent NCT00288704 2011
  144. Sun E. Motolani A. Campos L. Lu T. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 16 8972 10.3390/ijms23168972 36012242
    [Google Scholar]
  145. Safety and tolerability of etanercept in Alzheimer's disease (STEADI-09). Patent NCT01068353 2014
  146. Cognitive dysfunction and inflammation in depression: Experimental inhibition via infliximab. Patent NCT06136546 2025
  147. A study of XPro1595 in patients with early Alzheimer's disease with biomarkers of inflammation (MINDFuL). Patent NCT05318976 2025
  148. Wang H.Y. Pei Z. Xu Q. Brunelle L.A. Burns L.H. Thornton G.B. SavaDx, a novel plasma biomarker to detect Alzheimer’s disease, confirms mechanism of action of simufilam. Alzheimers Dement. 2021 17 S5 e054385 10.1002/alz.054385
    [Google Scholar]
  149. Simufilam 100 Mg for mild-to-moderate Alzheimer's disease (RETHINK-ALZ). Patent NCT04994483 2024
  150. Decourt B. Wilson J. Ritter A. Dardis C. DiFilippo F. Zhuang X. Cordes D. Lee G. Fulkerson N. St Rose T. Hartley K. Sabbagh M. MCLENA-1: A phase II clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to Alzheimer’s disease. Open Access J. Clin. Trials 2020 12 1 13 10.2147/OAJCT.S221914 32123490
    [Google Scholar]
  151. MCLENA-2: A phase II clinical trial for the assessment of lenalidomide in patients with mild cognitive impairment due to Alzheimer's disease. Patent NCT06177028 2023
  152. A study of JNJ-55308942 in the treatment of bipolar depression. Patent NCT05328297 2025
  153. First time in human study evaluating the safety, tolerability, pharmacokinetics, pharmacodynamics and the effect of food of single assending doses of GSK1482160. Patent NCT00849134 2017
  154. Nguyen L.T.N. Nguyen H.D. Kim Y.J. Nguyen T.T. Lai T.T. Lee Y.K. Ma H. Kim Y.E. Role of NLRP3 inflammasome in Parkinson’s disease and therapeutic considerations. J. Parkinsons Dis. 2022 12 7 2117 2133 10.3233/JPD‑223290 35988226
    [Google Scholar]
  155. P2X7 receptor, inflammation and neurodegenerative diseases (NeuroInfiam). Patent NCT03918616 2019
  156. Adamu A. Li S. Gao F. Xue G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024 16 1347987 10.3389/fnagi.2024.1347987 38681666
    [Google Scholar]
  157. Qin J. Ma Z. Chen X. Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front. Neurol. 2023 14 1103416 10.3389/fneur.2023.1103416 36959826
    [Google Scholar]
  158. Fleiss B. Van Steenwinckel J. Bokobza C. K Shearer I. Ross-Munro E. Gressens P. Microglia-mediated neurodegeneration in perinatal brain injuries. Biomolecules 2021 11 1 99 10.3390/biom11010099 33451166
    [Google Scholar]
  159. Yu Y. Chen R. Mao K. Deng M. Li Z. The role of glial cells in synaptic dysfunction: Insights into Alzheimer’s disease mechanisms. Aging Dis. 2024 15 2 459 479 10.14336/AD.2023.0718 37548934
    [Google Scholar]
  160. Wang C. Zong S. Cui X. Wang X. Wu S. Wang L. Liu Y. Lu Z. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front. Immunol. 2023 14 1117172 10.3389/fimmu.2023.1117172 36911732
    [Google Scholar]
  161. Yang J. Wise L. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease. Front. Immunol. 2020 11 724 10.3389/fimmu.2020.00724 32391019
    [Google Scholar]
  162. Song G.J. Suk K. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front. Aging Neurosci. 2017 9 139 10.3389/fnagi.2017.00139 28555105
    [Google Scholar]
  163. Reid J.K. Kuipers H.F. She doesn’t even go here: The role of inflammatory astrocytes in CNS disorders. Front. Cell. Neurosci. 2021 15 704884 10.3389/fncel.2021.704884 34539348
    [Google Scholar]
  164. Roßner S. Lange-Dohna C. Zeitschel U. Perez-Polo J.R. Alzheimer’s disease β‐secretase BACE1 is not a neuron‐specific enzyme. J. Neurochem. 2005 92 2 226 234 10.1111/j.1471‑4159.2004.02857.x 15663471
    [Google Scholar]
  165. Giovannoni F. Quintana F.J. The role of astrocytes in CNS inflammation. Trends Immunol. 2020 41 9 805 819 10.1016/j.it.2020.07.007 32800705
    [Google Scholar]
  166. Yan Y-Q. Ma C-G. Ding Z-B. Song L-J. Wang Q. Kumar G. Astrocytes: A double-edged sword in neurodegenerative diseases. Neural Regen. Res. 2021 16 9 1702 1710 10.4103/1673‑5374.306064 33510058
    [Google Scholar]
  167. Kwon H.S. Koh S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020 9 1 42 10.1186/s40035‑020‑00221‑2 33239064
    [Google Scholar]
  168. Zang X. Chen S. Zhu J. Ma J. Zhai Y. The emerging role of central and peripheral immune systems in neurodegenerative diseases. Front. Aging Neurosci. 2022 14 872134 10.3389/fnagi.2022.872134 35547626
    [Google Scholar]
  169. Satarker S. Bojja S.L. Gurram P.C. Mudgal J. Arora D. Nampoothiri M. Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders. Cells 2022 11 7 1139 10.3390/cells11071139 35406702
    [Google Scholar]
  170. Sun M. You H. Hu X. Luo Y. Zhang Z. Song Y. An J. Lu H. Microglia–Astrocyte interaction in neural development and neural pathogenesis. Cells 2023 12 15 1942 10.3390/cells12151942 37566021
    [Google Scholar]
  171. Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: Implications for therapy. Curr. Neuropharmacol. 2018 16 5 508 518 10.2174/1570159X15666170720095240 28730967
    [Google Scholar]
  172. Dai D.L. Li M. Lee E.B. Human Alzheimer’s disease reactive astrocytes exhibit a loss of homeostastic gene expression. Acta Neuropathol. Commun. 2023 11 1 127 10.1186/s40478‑023‑01624‑8 37533101
    [Google Scholar]
  173. Preman P. Alfonso-Triguero M. Alberdi E. Verkhratsky A. Arranz A.M. Astrocytes in Alzheimer’s disease: Pathological significance and molecular pathways. Cells 2021 10 3 540 10.3390/cells10030540 33806259
    [Google Scholar]
  174. Darvish Khadem M. Tabandeh M.R. Haschemi A. Kheirollah A. Shahriari A. Dimethyl itaconate reprograms neurotoxic to neuroprotective primary astrocytes through the regulation of NLRP3 inflammasome and NRF2/HO-1 pathways. Mol. Cell. Neurosci. 2022 122 103758 10.1016/j.mcn.2022.103758 35868484
    [Google Scholar]
  175. Guo M.F. Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer's disease mice via the downregulation of TLR4/Myd88/NF-κB pathway. J Neuroimmunol 2020 346 577284 10.1016/j.jneuroim.2020.577284 32652366
    [Google Scholar]
  176. Sarkar S. Biswas S.C. Astrocyte subtype-specific approach to Alzheimer’s disease treatment. Neurochem. Int. 2021 145 104956 10.1016/j.neuint.2021.104956 33503465
    [Google Scholar]
  177. Santiago-Balmaseda A. Aguirre-Orozco A. Valenzuela-Arzeta I.E. Villegas-Rojas M.M. Pérez-Segura I. Jiménez-Barrios N. Hurtado-Robles E. Rodríguez-Hernández L.D. Rivera-German E.R. Guerra-Crespo M. Martinez-Fong D. Ledesma-Alonso C. Diaz-Cintra S. Soto-Rojas L.O. Neurodegenerative diseases: Unraveling the heterogeneity of astrocytes. Cells 2024 13 11 921 10.3390/cells13110921 38891053
    [Google Scholar]
  178. Rathinam V.A.K. Fitzgerald K.A. Inflammasome complexes: Emerging mechanisms and effector functions. Cell 2016 165 4 792 800 10.1016/j.cell.2016.03.046 27153493
    [Google Scholar]
  179. Asare Y. Shnipova M. Živković L. Schlegl C. Tosato F. Aronova A. Brandhofer M. Strohm L. Beaufort N. Malik R. Weber C. Bernhagen J. Dichgans M. IKKβ binds NLRP3 providing a shortcut to inflammasome activation for rapid immune responses. Signal Transduct. Target. Ther. 2022 7 1 355 10.1038/s41392‑022‑01189‑3 36257930
    [Google Scholar]
  180. Moloudizargari M. Moradkhani F. Asghari N. Fallah M. Asghari M.H. Moghadamnia A.A. Abdollahi M. NLRP inflammasome as a key role player in the pathogenesis of environmental toxicants. Life Sci. 2019 231 116585 10.1016/j.lfs.2019.116585 31226415
    [Google Scholar]
  181. Chen L. Cao S. Lin Z. He S. Zuo J. NOD-like receptors in autoimmune diseases. Acta Pharmacol. Sin. 2021 42 11 1742 1756 10.1038/s41401‑020‑00603‑2 33589796
    [Google Scholar]
  182. Dugger B.N. Dickson D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017 9 7 a028035 10.1101/cshperspect.a028035 28062563
    [Google Scholar]
  183. Singh J. Habean M.L. Panicker N. Inflammasome assembly in neurodegenerative diseases. Trends Neurosci. 2023 46 10 814 831 10.1016/j.tins.2023.07.009 37633753
    [Google Scholar]
  184. Sutterwala F.S. Haasken S. Cassel S.L. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci. 2014 1319 1 82 95 10.1111/nyas.12458 24840700
    [Google Scholar]
  185. Sharif H. Wang L. Wang W.L. Magupalli V.G. Andreeva L. Qiao Q. Hauenstein A.V. Wu Z. Núñez G. Mao Y. Wu H. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 2019 570 7761 338 343 10.1038/s41586‑019‑1295‑z 31189953
    [Google Scholar]
  186. Andreeva L. David L. Rawson S. Shen C. Pasricha T. Pelegrin P. Wu H. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 2021 184 26 6299 6312.e22 10.1016/j.cell.2021.11.011 34861190
    [Google Scholar]
  187. Hochheiser I.V. Pilsl M. Hagelueken G. Moecking J. Marleaux M. Brinkschulte R. Latz E. Engel C. Geyer M. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 2022 604 7904 184 189 10.1038/s41586‑022‑04467‑w 35114687
    [Google Scholar]
  188. Ohto U. Kamitsukasa Y. Ishida H. Zhang Z. Murakami K. Hirama C. Maekawa S. Shimizu T. Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation. Proc. Natl. Acad. Sci. USA 2022 119 11 e2121353119 10.1073/pnas.2121353119 35254907
    [Google Scholar]
  189. Dekker C. Mattes H. Wright M. Boettcher A. Hinniger A. Hughes N. Kapps-Fouthier S. Eder J. Erbel P. Stiefl N. Mackay A. Farady C.J. Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition. J. Mol. Biol. 2021 433 24 167309 10.1016/j.jmb.2021.167309 34687713
    [Google Scholar]
  190. Hu Z Yan C Liu P Huang Z Ma R Zhang C Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 2013 341 6142 172 175 10.1126/science.1236381 23765277
    [Google Scholar]
  191. Maekawa S. Ohto U. Shibata T. Miyake K. Shimizu T. Crystal structure of NOD2 and its implications in human disease. Nat. Commun. 2016 7 1 11813 10.1038/ncomms11813 27283905
    [Google Scholar]
  192. Zhang L Chen S Ruan J Wu J Tong AB Yin Q Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 2015 350 6259 404 409 10.1126/science.aac5789 26449474
    [Google Scholar]
  193. Hu Z Zhou Q Zhang C Fan S Cheng W Zhao Y Structural and biochemical basis for induced self-propagation of NLRC4. Science 2015 350 6259 399 404 10.1126/science.aac5489 26449475
    [Google Scholar]
  194. Fu J. Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol. 2023 41 1 301 316 10.1146/annurev‑immunol‑081022‑021207 36750315
    [Google Scholar]
  195. Saresella M. La Rosa F. Piancone F. Zoppis M. Marventano I. Calabrese E. Rainone V. Nemni R. Mancuso R. Clerici M. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol. Neurodegener. 2016 11 1 23 10.1186/s13024‑016‑0088‑1 26939933
    [Google Scholar]
  196. Bai H. Zhang Q. Activation of NLRP3 inflammasome and onset of Alzheimer’s disease. Front. Immunol. 2021 12 701282 10.3389/fimmu.2021.701282 34381452
    [Google Scholar]
  197. Shimada K. Crother T.R. Karlin J. Dagvadorj J. Chiba N. Chen S. Ramanujan V.K. Wolf A.J. Vergnes L. Ojcius D.M. Rentsendorj A. Vargas M. Guerrero C. Wang Y. Fitzgerald K.A. Underhill D.M. Town T. Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012 36 3 401 414 10.1016/j.immuni.2012.01.009 22342844
    [Google Scholar]
  198. Sharma B. Satija G. Madan A. Garg M. Alam M.M. Shaquiquzzaman M. Khanna S. Tiwari P. Parvez S. Iqubal A. Haque S.E. Khan M.A. Role of NLRP3 inflammasome and its inhibitors as emerging therapeutic drug candidate for Alzheimer’s disease: A review of mechanism of activation, regulation, and inhibition. Inflammation 2023 46 1 56 87 10.1007/s10753‑022‑01730‑0 36006570
    [Google Scholar]
  199. Murphy N. Cowley T.R. Richardson J.C. Virley D. Upton N. Walter D. Lynch M.A. The neuroprotective effect of a specific P2X₇ receptor antagonist derives from its ability to inhibit assembly of the NLRP3 inflammasome in glial cells. Brain Pathol. 2012 22 3 295 306 10.1111/j.1750‑3639.2011.00531.x 21933296
    [Google Scholar]
  200. Que X. Zheng S. Song Q. Pei H. Zhang P. Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis. 2024 11 2 819 829 10.1016/j.gendis.2023.01.009 37692521
    [Google Scholar]
  201. Chen Y. Ye X. Escames G. Lei W. Zhang X. Li M. Jing T. Yao Y. Qiu Z. Wang Z. Acuña-Castroviejo D. Yang Y. The NLRP3 inflammasome: Contributions to inflammation-related diseases. Cell. Mol. Biol. Lett. 2023 28 1 51 10.1186/s11658‑023‑00462‑9 37370025
    [Google Scholar]
  202. Mariathasan S. Weiss D.S. Newton K. McBride J. O’Rourke K. Roose-Girma M. Lee W.P. Weinrauch Y. Monack D.M. Dixit V.M. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006 440 7081 228 232 10.1038/nature04515 16407890
    [Google Scholar]
  203. Erdei J. Tóth A. Balogh E. Nyakundi B.B. Bányai E. Ryffel B. Paragh G. Cordero M.D. Jeney V. Induction of NLRP3 inflammasome activation by heme in human endothelial cells. Oxid. Med. Cell. Longev. 2018 2018 1 4310816 10.1155/2018/4310816 29743981
    [Google Scholar]
  204. Hornung V. Bauernfeind F. Halle A. Samstad E.O. Kono H. Rock K.L. Fitzgerald K.A. Latz E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 2008 9 8 847 856 10.1038/ni.1631 18604214
    [Google Scholar]
  205. Eigenbrod T. Dalpke A.H. Bacterial RNA: An underestimated stimulus for innate immune responses. J. Immunol. 2015 195 2 411 418 10.4049/jimmunol.1500530 26138638
    [Google Scholar]
  206. Rogiers O. Frising U.C. Kucharíková S. Jabra-Rizk M.A. van Loo G. Van Dijck P. Candidalysin crucially contributes to nlrp3 inflammasome activation by candida albicans hyphae. mBio 2019 10 1 10.1128/mBio.02221‑18 30622184
    [Google Scholar]
  207. Mathur A. Feng S. Hayward J.A. Ngo C. Fox D. Atmosukarto I.I. Price J.D. Schauer K. Märtlbauer E. Robertson A.A.B. Burgio G. Fox E.M. Leppla S.H. Kaakoush N.O. Man S.M. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat. Microbiol. 2018 4 2 362 374 10.1038/s41564‑018‑0318‑0 30531979
    [Google Scholar]
  208. Man S.M. Karki R. Sasai M. Place D.E. Kesavardhana S. Temirov J. Frase S. Zhu Q. Malireddi R.K.S. Kuriakose T. Peters J.L. Neale G. Brown S.A. Yamamoto M. Kanneganti T.D. IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase-11-NLRP3 inflammasomes. Cell 2016 167 2 382 396.e17 10.1016/j.cell.2016.09.012 27693356
    [Google Scholar]
  209. Shenoy AR Wellington DA Kumar P Kassa H Booth CJ Cresswell P GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 2012 336 6080 481 485 10.1126/science.1217141 22461501
    [Google Scholar]
  210. Accogli T. Hibos C. Vegran F. Canonical and non-canonical functions of NLRP3. J. Adv. Res. 2023 53 137 151 10.1016/j.jare.2023.01.001 36610670
    [Google Scholar]
  211. Bibo-Verdugo B. Snipas S.J. Kolt S. Poreba M. Salvesen G.S. Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11. J. Biol. Chem. 2020 295 32 11292 11302 10.1074/jbc.RA120.014259 32554464
    [Google Scholar]
  212. Evavold C.L. Ruan J. Tan Y. Xia S. Wu H. Kagan J.C. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 2018 48 1 35 44.e6 10.1016/j.immuni.2017.11.013 29195811
    [Google Scholar]
  213. Starobova H. Nadar E.I. Vetter I. The NLRP3 inflammasome: Role and therapeutic potential in pain treatment. Front. Physiol. 2020 11 1016 10.3389/fphys.2020.01016 32973552
    [Google Scholar]
  214. Gaidt M.M. Ebert T.S. Chauhan D. Schmidt T. Schmid-Burgk J.L. Rapino F. Robertson A.A.B. Cooper M.A. Graf T. Hornung V. Human monocytes engage an alternative inflammasome pathway. Immunity 2016 44 4 833 846 10.1016/j.immuni.2016.01.012 27037191
    [Google Scholar]
  215. Zewinger S. Reiser J. Jankowski V. Alansary D. Hahm E. Triem S. Klug M. Schunk S.J. Schmit D. Kramann R. Körbel C. Ampofo E. Laschke M.W. Selejan S.R. Paschen A. Herter T. Schuster S. Silbernagel G. Sester M. Sester U. Aßmann G. Bals R. Kostner G. Jahnen-Dechent W. Menger M.D. Rohrer L. März W. Böhm M. Jankowski J. Kopf M. Latz E. Niemeyer B.A. Fliser D. Laufs U. Speer T. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat. Immunol. 2020 21 1 30 41 10.1038/s41590‑019‑0548‑1 31819254
    [Google Scholar]
  216. Gao Y. Yu S. Chen M. Wang X. Pan L. Wei B. Meng G. cFLIPS regulates alternative NLRP3 inflammasome activation in human monocytes. Cell. Mol. Immunol. 2023 20 10 1203 1215 10.1038/s41423‑023‑01077‑y 37591930
    [Google Scholar]
  217. kodi T. Sankhe R. Gopinathan A. Nandakumar K. Kishore A. New insights on NLRP3 inflammasome: Mechanisms of activation, inhibition, and epigenetic regulation. J. Neuroimmune Pharmacol. 2024 19 1 7 10.1007/s11481‑024‑10101‑5 38421496
    [Google Scholar]
  218. Adinolfi E. Giuliani A.L. De Marchi E. Pegoraro A. Orioli E. Di Virgilio F. The P2X7 receptor: A main player in inflammation. Biochem. Pharmacol. 2018 151 234 244 10.1016/j.bcp.2017.12.021 29288626
    [Google Scholar]
  219. Beamer E. Kuchukulla M. Boison D. Engel T. ATP and adenosine—Two players in the control of seizures and epilepsy development. Prog. Neurobiol. 2021 204 102105 10.1016/j.pneurobio.2021.102105 34144123
    [Google Scholar]
  220. Ferrari D. Pizzirani C. Adinolfi E. Lemoli R.M. Curti A. Idzko M. Panther E. Di Virgilio F. The P2X7 receptor: A key player in IL-1 processing and release. J. Immunol. 2006 176 7 3877 3883 10.4049/jimmunol.176.7.3877 16547218
    [Google Scholar]
  221. Zhang W.J. Activation of P2×7 receptor promotes the invasion and migration of colon cancer cells via the STAT3 signaling. Front Cell Dev Biol 2020 8 586555 10.3389/fcell.2020.586555 33330466
    [Google Scholar]
  222. Ronning K.E. Déchelle-Marquet P.A. Che Y. Guillonneau X. Sennlaub F. Delarasse C. The P2X7 receptor, a multifaceted receptor in Alzheimer’s disease. Int. J. Mol. Sci. 2023 24 14 11747 10.3390/ijms241411747 37511507
    [Google Scholar]
  223. Paik S. Kim J.K. Silwal P. Sasakawa C. Jo E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol. 2021 18 5 1141 1160 10.1038/s41423‑021‑00670‑3 33850310
    [Google Scholar]
  224. Babajide Rowaiye A. Oluwasunmibare O.S. Suleiman Abubakar U. Aondona P. Chinonye Emenyeonu L. Agbalalah T. The NLRP3 inflammasome as a target for antiinflammatory drugs. The NLRP3 Inflammasome: An Attentive Arbiter of Inflammatory Response Bentham Books 2024 10.2174/9789815223941124010009
    [Google Scholar]
  225. Sidoryk-Węgrzynowicz M. Strużyńska L. Astroglial and microglial purinergic P2X7 receptor as a major contributor to neuroinflammation during the course of multiple sclerosis. Int. J. Mol. Sci. 2021 22 16 8404 10.3390/ijms22168404 34445109
    [Google Scholar]
  226. von Mücke-Heim I.A. Martin J. Uhr M. Ries C. Deussing J.M. The human P2X7 receptor alters microglial morphology and cytokine secretion following immunomodulation. Front. Pharmacol. 2023 14 1148190 10.3389/fphar.2023.1148190 37101546
    [Google Scholar]
  227. Tao B. Pei J. Li H. Yang G. Shi X. Zhang Z. Wang H. Zheng Z. Liu Y. Zhang J. Inhibition of P2X7R alleviates neuroinflammation and brain edema after traumatic brain injury by suppressing the NF-κB/NLRP3 inflammasome pathway. J. Neurorestoratology 2024 12 2 100106 10.1016/j.jnrt.2024.100106
    [Google Scholar]
  228. Illes P. P2X7 receptors amplify CNS damage in neurodegenerative diseases. Int. J. Mol. Sci. 2020 21 17 5996 10.3390/ijms21175996 32825423
    [Google Scholar]
  229. Parvathenani L.K. Tertyshnikova S. Greco C.R. Roberts S.B. Robertson B. Posmantur R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J. Biol. Chem. 2003 278 15 13309 13317 10.1074/jbc.M209478200 12551918
    [Google Scholar]
  230. Lee H.G. Won S.M. Gwag B.J. Lee Y.B. Microglial P2X 7 receptor expression is accompanied by neuronal damage in the cerebral cortex of the APP swe /PS1dE9 mouse model of Alzheimer’s disease. Exp. Mol. Med. 2011 43 1 7 14 10.3858/emm.2011.43.1.001 21088470
    [Google Scholar]
  231. Brucato A. Imazio M. Gattorno M. Lazaros G. Maestroni S. Carraro M. Finetti M. Cumetti D. Carobbio A. Ruperto N. Marcolongo R. Lorini M. Rimini A. Valenti A. Erre G.L. Sormani M.P. Belli R. Gaita F. Martini A. Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence. JAMA 2016 316 18 1906 1912 10.1001/jama.2016.15826 27825009
    [Google Scholar]
  232. Ridker P.M. Everett B.M. Thuren T. MacFadyen J.G. Chang W.H. Ballantyne C. Fonseca F. Nicolau J. Koenig W. Anker S.D. Kastelein J.J.P. Cornel J.H. Pais P. Pella D. Genest J. Cifkova R. Lorenzatti A. Forster T. Kobalava Z. Vida-Simiti L. Flather M. Shimokawa H. Ogawa H. Dellborg M. Rossi P.R.F. Troquay R.P.T. Libby P. Glynn R.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017 377 12 1119 1131 10.1056/NEJMoa1707914 28845751
    [Google Scholar]
  233. Klein A.L. Imazio M. Brucato A. Cremer P. LeWinter M. Abbate A. Lin D. Martini A. Beutler A. Chang S. Fang F. Gervais A. Perrin R. Paolini J.F. RHAPSODY: Rationale for and design of a pivotal Phase 3 trial to assess efficacy and safety of rilonacept, an interleukin-1α and interleukin-1β trap, in patients with recurrent pericarditis. Am. Heart J. 2020 228 81 90 10.1016/j.ahj.2020.07.004 32866928
    [Google Scholar]
  234. Mackay A. Velcicky J. Gommermann N. Mattes H. Janser P. Wright M. Dubois C. Brenneisen S. Ilic S. Vangrevelinghe E. Stiefl N. Boettcher A. Schoenboerner M. Vogelsanger M. Muller-Bentz S. Kamke M. Rubert J. Kauffmann M. Desrayaud S. Trunzer M. Srinivas H. Hinniger A. von Burg N. Beltz K. Dekker C. Farady C.J. Discovery of NP3-253, a potent brain penetrant inhibitor of the NLRP3 inflammasome. J. Med. Chem. 2024 67 23 20780 20798 10.1021/acs.jmedchem.4c02350 39574318
    [Google Scholar]
  235. Kim E.Y. Im J.H. Han J. Cho W.J. Structure-based design and synthesis of sulfonylureas as novel NLRP3 inhibitors for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2024 99 129622 10.1016/j.bmcl.2024.129622 38244940
    [Google Scholar]
  236. Biby S. Mondal P. Xu Y. Gomm A. Kaur B. Namme J.N. Wang C. Tanzi R.E. Zhang S. Zhang C. Functional characterization of an arylsulfonamide-based small-molecule inhibitor of the NLRP3 inflammasome. ACS Chem. Neurosci. 2024 15 19 3576 3586 10.1021/acschemneuro.4c00512 39297418
    [Google Scholar]
  237. Ghosh P. Singh R. Chatterjee C. Kumar A. Singh S.K. Computational screening of coumarin derivatives as inhibitors of the NACHT domain of NLRP3 inflammasome for the treatment of Alzheimer’s disease. J. Biomol. Struct. Dyn. 2023 43 5 2187 2203 38116751
    [Google Scholar]
  238. Haseeb M. Javaid N. Yasmeen F. Jeong U. Han J.H. Yoon J. Seo J.Y. Heo J.K. Shin H.C. Kim M.S. Kim W. Choi S. Novel small-molecule inhibitor of NLRP3 inflammasome reverses cognitive impairment in an Alzheimer’s disease model. ACS Chem. Neurosci. 2022 13 6 818 833 10.1021/acschemneuro.1c00831 35196855
    [Google Scholar]
  239. Kuwar R. Rolfe A. Di L. Blevins H. Xu Y. Sun X. Bloom G.S. Zhang S. Sun D. A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer’s disease transgenic mice. J. Alzheimers Dis. 2021 82 4 1769 1783 10.3233/JAD‑210400 34219728
    [Google Scholar]
  240. Hartman G. Humphries P. Hughes R. Ho A. Montgomery R. Deshpande A. Mahanta M. Tronnes S. Cowdin S. He X. Liu F. Zhang L. Liu C. Dou D. Li J. Spasic A. Coll R. Marleaux M. Hochheiser I.V. Geyer M. Rubin P. Fortney K. Wilhelmsen K. The discovery of novel and potent indazole NLRP3 inhibitors enabled by DNA-encoded library screening. Bioorg. Med. Chem. Lett. 2024 102 129675 10.1016/j.bmcl.2024.129675 38417632
    [Google Scholar]
  241. Jha D. Bakker E.N.T.P. Kumar R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer’s disease. J. Neurochem. 2023 jnc.15788 10.1111/jnc.15788 36802053
    [Google Scholar]
  242. Xu Y. Xu Y. Blevins H. Guo C. Biby S. Wang X.Y. Wang C. Zhang S. Development of sulfonamide-based NLRP3 inhibitors: Further modifications and optimization through structure-activity relationship studies. Eur. J. Med. Chem. 2022 238 114468 10.1016/j.ejmech.2022.114468 35635948
    [Google Scholar]
  243. Kuwar R. Rolfe A. Di L. Xu H. He L. Jiang Y. Zhang S. Sun D. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J. Neuroinflammation 2019 16 1 81 10.1186/s12974‑019‑1471‑y 30975164
    [Google Scholar]
  244. Zheng J. Jiang Z. Song Y. Huang S. Du Y. Yang X. Xiao Y. Ma Z. Xu D. Li J. 3,4-Methylenedioxy-β-nitrostyrene alleviates dextran sulfate sodium–induced mouse colitis by inhibiting the NLRP3 inflammasome. Front. Pharmacol. 2022 13 866228 10.3389/fphar.2022.866228 35784693
    [Google Scholar]
  245. Zhang Y. Lin Z. Chen D. He Y. CY-09 attenuates the progression of osteoarthritis via inhibiting NLRP3 inflammasome-mediated pyroptosis. Biochem. Biophys. Res. Commun. 2021 553 119 125 10.1016/j.bbrc.2021.03.055 33765556
    [Google Scholar]
  246. Yu J. Zhao Z. Li Y. Chen J. Huang N. Luo Y. Role of NLRP3 in Parkinson’s disease: Specific activation especially in dopaminergic neurons. Heliyon 2024 10 7 e28838 10.1016/j.heliyon.2024.e28838 38596076
    [Google Scholar]
  247. Li J. Zhuang L. Luo X. Liang J. Sun E. He Y. Protection of MCC950 against Alzheimer’s disease via inhibiting neuronal pyroptosis in SAMP8 mice. Exp. Brain Res. 2020 238 11 2603 2614 10.1007/s00221‑020‑05916‑6 32892233
    [Google Scholar]
  248. Dempsey C. Rubio Araiz A. Bryson K.J. Finucane O. Larkin C. Mills E.L. Robertson A.A.B. Cooper M.A. O’Neill L.A.J. Lynch M.A. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun. 2017 61 306 316 10.1016/j.bbi.2016.12.014 28003153
    [Google Scholar]
  249. Daniels M.J.D. Rivers-Auty J. Schilling T. Spencer N.G. Watremez W. Fasolino V. Booth S.J. White C.S. Baldwin A.G. Freeman S. Wong R. Latta C. Yu S. Jackson J. Fischer N. Koziel V. Pillot T. Bagnall J. Allan S.M. Paszek P. Galea J. Harte M.K. Eder C. Lawrence C.B. Brough D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun. 2016 7 1 12504 10.1038/ncomms12504 27509875
    [Google Scholar]
  250. Soma J. Sugawara T. Huang Y.D. Nakajima J. Kawamura M. Tranilast slows the progression of advanced diabetic nephropathy. Nephron J. 2002 92 3 693 698 10.1159/000064071 12372957
    [Google Scholar]
  251. Huang Y. Jiang H. Chen Y. Wang X. Yang Y. Tao J. Deng X. Liang G. Zhang H. Jiang W. Zhou R. Tranilast directly targets NLRP 3 to treat inflammasome‐driven diseases. EMBO Mol. Med. 2018 10 4 e8689 10.15252/emmm.201708689 29531021
    [Google Scholar]
  252. Hongmei Song P.U.M.C.H. A clinical study of tranilast in the treatment of Cryopyrin-Associated Periodic Syndrome (CAPS). Patent NCT03923140 2019
  253. Klück V. Jansen T.L.T.A. Janssen M. Comarniceanu A. Efdé M. Tengesdal I.W. Schraa K. Cleophas M.C.P. Scribner C.L. Skouras D.B. Marchetti C. Dinarello C.A. Joosten L.A.B. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2020 2 5 e270 e280 10.1016/S2665‑9913(20)30065‑5 33005902
    [Google Scholar]
  254. Olatec Therapeutics L.L.C. Study of dapansutrile tablets in subjects with an acute gout flare. Patent NCT05658575 2024
  255. Efficacy, safety, tolerability, pharmacokinetics, and pharmacodynamics of ZYIL1 in patients with amyotrophic lateral sclerosis. Patent NCT05981040 2024
  256. Study of efficacy, safety and tolerability of DFV890 in patients with knee osteoarthritis. Patent NCT04886258 2025
  257. A study to evaluate VTX2735 in patients with cryopyrin-associated periodic syndrome (explore). Patent NCT05812781 2024
  258. Effects of NT-0796 in obese participants at risk of cardiovascular disease. Patent NCT06129409 2024
  259. Zhang X. Wang Z. Zheng Y. Yu Q. Zeng M. Bai L. Yang L. Guo M. Jiang X. Gan J. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int. J. Mol. Med. 2023 51 4 35 10.3892/ijmm.2023.5238 36960868
    [Google Scholar]
  260. Safety and efficacy of adding intravenous N-acetyl cysteine in colon surgeries. Patent NCT03589495 2018
  261. Safety and tolerability, pharmacokinetic and pharmacodynamic study with inzomelid. Patent NCT04015076 2020
  262. Oronsky B. Reid T.R. Larson C. Caroen S. Quinn M. Burbano E. Varner G. Thilagar B. Brown B. Coyle A. Ferry L. Abrouk N. Oronsky A. Scribner C.L. Carter C.A. REPLATINUM Phase III randomized study: RRx-001 + platinum doublet versus platinum doublet in third-line small cell lung cancer. Future Oncol. 2019 15 30 3427 3433 10.2217/fon‑2019‑0317 31509028
    [Google Scholar]
  263. Jayabalan N. Oronsky B. Cabrales P. Reid T. Caroen S. Johnson A.M. Birch N.A. O’Sullivan J.D. Gordon R. A review of RRx-001: A late-stage multi-indication inhibitor of NLRP3 activation and chronic inflammation. Drugs 2023 83 5 389 402 10.1007/s40265‑023‑01838‑z 36920652
    [Google Scholar]
  264. RRx-001 sequentially with a platinum doublet or a platinum doublet in third-line or beyond in patients with small cell lung cancer (REPLATINUM). Patent NCT03699956 2024
/content/journals/cnsnddt/10.2174/0118715273377780250505115039
Loading
/content/journals/cnsnddt/10.2174/0118715273377780250505115039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test