Skip to content
2000
Volume 24, Issue 11
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Alzheimer's disease (AD) is the primary cause of dementia in elderly individuals, characterized by progressive memory loss, cognitive decline, and impaired daily functioning. Pathologically, AD is associated with the accumulation of amyloid-β (Aβ) plaques, tau tangles, mitochondrial dysfunction, and chronic neuroinflammation. The activation of the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome by Aβ clusters triggers microglial activation, leading to a cascade of inflammatory responses. Similarly, tau tangles stimulate neuronal and glial cells, further amplifying NLRP3 activation and perpetuating a cycle of chronic inflammation. Mitochondrial dysfunction exacerbates this process by increasing oxidative stress and inflammasome activation. Additionally, purinergic receptor P2X7 (P2X7R) activation in microglia plays a crucial role in initiating neuroinflammation, making it a potential therapeutic target. Despite extensive research, current AD therapies remain symptomatic rather than disease-modifying. Targeting the NLRP3 inflammasome offers a promising strategy for mitigating AD progression. Various small-molecule inhibitors, monoclonal antibodies, and repurposed drugs have been explored to inhibit NLRP3 activation and its downstream signaling pathways. Preclinical studies suggest that NLRP3 inhibitors effectively reduce Aβ- and tau-induced neuroinflammation while improving mitochondrial function and overall neuronal survival. This review summarizes NLRP3 inflammasome priming, activation, and the therapeutic potential of its inhibitors in AD, highlighting challenges such as tau pathology, biomarker limitations, and treatment optimization. While NLRP3 remains a promising target, most inhibitors are in the early stages with uncertain long-term efficacy and BBB penetration. Future research should explore genetic variability, sex differences, and alternative approaches to enhance neuroprotective strategies.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273377780250505115039
2025-05-21
2025-12-14
Loading full text...

Full text loading...

References

  1. UwishemaO. MahmoudA. SunJ. Is Alzheimer’s disease an infectious neurological disease? A review of the literature.Brain Behav.2022128e272810.1002/brb3.2728 35879909
    [Google Scholar]
  2. KimY. LimJ. OhJ. Taming neuroinflammation in Alzheimer’s disease: The protective role of phytochemicals through the gut−brain axis.Biomed. Pharmacother.202417811727710.1016/j.biopha.2024.117277 39126772
    [Google Scholar]
  3. Zivari-GhaderT. ValiogluF. EftekhariA. Recent progresses in natural based therapeutic materials for Alzheimer’s disease.Heliyon2024104e2635110.1016/j.heliyon.2024.e26351 38434059
    [Google Scholar]
  4. KnopmanD.S. AmievaH. PetersenR.C. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y 33986301
    [Google Scholar]
  5. GuoT. ZhangD. ZengY. HuangT.Y. XuH. ZhaoY. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.20201514010.1186/s13024‑020‑00391‑7 32677986
    [Google Scholar]
  6. AyodeleT. RogaevaE. KurupJ.T. BeechamG. ReitzC. Early-onset Alzheimer’s disease: What is missing in research?Curr. Neurol. Neurosci. Rep.2021212410.1007/s11910‑020‑01090‑y 33464407
    [Google Scholar]
  7. World Alzheimer report 2023.2023Available from: https://www.alzint.org/u/World-Alzheimer-Report-2023.pdf
  8. LeeJ. MeijerE. LangaK.M. Prevalence of dementia in India: National and state estimates from a nationwide study.Alzheimers Dement.20231972898291210.1002/alz.12928 36637034
    [Google Scholar]
  9. ReedE.G. Keller-NorrellP.R. Minding the gap: Exploring neuroinflammatory and microglial sex differences in Alzheimer’s disease.Int. J. Mol. Sci.202324241737710.3390/ijms242417377 38139206
    [Google Scholar]
  10. MishraP.S. MishraR. KumarA. Comprehensive review on Alzheimer’s disease: Natural therapeutics, gaps and challenges.Cent. Nerv. Syst. Agents Med. Chem.2024242410.2174/0118715249307525240614073143 38939998
    [Google Scholar]
  11. BhandarkarA. NaikP. VakkundK. JunjappanavarS. BakareS. PattarS. Deep learning based computer aided diagnosis of Alzheimer’s disease: A snapshot of last 5 years, gaps, and future directions.Artif. Intell. Rev.20245723010.1007/s10462‑023‑10644‑8
    [Google Scholar]
  12. BabulalG.M. ZhaW. TraniJ.F. Identifying gaps and barriers in Alzheimer’s disease and related dementia research and management in low- and middle-income countries: A survey of health professionals and researchers.J. Alzheimers Dis.202410141307132010.3233/JAD‑240650 39302373
    [Google Scholar]
  13. ParikhN.H. ParikhP.K. RaoH.J. ShahK. DaveB.P. PrajapatiB.G. Current trends and updates in the treatment of Alzheimer’s disease.In: Alzheimer’s Disease and Advanced Drug Delivery Strategies.Elsevier202437339010.1016/B978‑0‑443‑13205‑6.00014‑5
    [Google Scholar]
  14. AbeysingheA.A.D.T. DeshapriyaR.D.U.S. UdawatteC. Alzheimer’s disease; A review of the pathophysiological basis and therapeutic interventions.Life Sci.202025611799610.1016/j.lfs.2020.117996 32585249
    [Google Scholar]
  15. PerneczkyR. DomG. ChanA. FalkaiP. BassettiC. Anti‐amyloid antibody treatments for Alzheimer’s disease.Eur. J. Neurol.2024312e1604910.1111/ene.16049 37697714
    [Google Scholar]
  16. CummingsJ. OsseA.M.L. CammannD. PowellJ. ChenJ. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease.BioDrugs202438152210.1007/s40259‑023‑00633‑2 37955845
    [Google Scholar]
  17. Budd HaeberleinS. AisenP.S. BarkhofF. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease.J. Prev. Alzheimers Dis.20229219721010.14283/jpad.2022.30 35542991
    [Google Scholar]
  18. SwansonC.J. ZhangY. DhaddaS. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody.Alzheimers Res. Ther.20211318010.1186/s13195‑021‑00813‑8 33865446
    [Google Scholar]
  19. van DyckC.H. SwansonC.J. AisenP. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa2212948 36449413
    [Google Scholar]
  20. PengY. JinH. XueY. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks.Front. Aging Neurosci.202315120657210.3389/fnagi.2023.1206572 37600514
    [Google Scholar]
  21. MorganD.G. MielkeM.M. Knowledge gaps in Alzheimer’s disease immune biomarker research.Alzheimers Dement.202117122030204210.1002/alz.12342 33984178
    [Google Scholar]
  22. ZhuGeD.L JavaidH.M.A. SaharN.E. ZhaoY.Z. HuhJ.Y. Fibroblast growth factor 2 exacerbates inflammation in adipocytes through NLRP3 inflammasome activation.Arch. Pharm. Res.202043121311132410.1007/s12272‑020‑01295‑2 33245516
    [Google Scholar]
  23. McManusR.M. LatzE. NLRP3 inflammasome signalling in Alzheimer’s disease.Neuropharmacology202425210994110.1016/j.neuropharm.2024.109941 38565393
    [Google Scholar]
  24. VejandlaB. SavaniS. AppalaneniR. VeeravalliR.S. GudeS.S. Alzheimer’s disease: The past, present, and future of a globally progressive disease.Cureus2024161e5170510.7759/cureus.51705 38313929
    [Google Scholar]
  25. KurkinenM. FułekM. FułekK. BeszłejJ.A. KurpasD. LeszekJ. The amyloid cascade hypothesis in Alzheimer’s disease: Should we change our thinking?Biomolecules202313345310.3390/biom13030453 36979388
    [Google Scholar]
  26. SitaG. GraziosiA. HreliaP. MorroniF. NLRP3 and infections: β-Amyloid in inflammasome beyond neurodegeneration.Int. J. Mol. Sci.20212213698410.3390/ijms22136984 34209586
    [Google Scholar]
  27. RoyR.G. MandalP.K. MaroonJ.C. Oxidative stress occurs prior to amyloid Aβ plaque formation and tau phosphorylation in Alzheimer’s disease: Role of glutathione and metal ions.ACS Chem. Neurosci.202314172944295410.1021/acschemneuro.3c00486 37561556
    [Google Scholar]
  28. NasbM. TaoW. ChenN. Alzheimer’s disease puzzle: Delving into pathogenesis hypotheses.Aging Dis.20241514373 37450931
    [Google Scholar]
  29. SongL. WellsE.A. RobinsonA.S. Critical molecular and cellular contributors to tau pathology.Biomedicines20219219010.3390/biomedicines9020190 33672982
    [Google Scholar]
  30. NunnariJ. SuomalainenA. Mitochondria: In sickness and in health.Cell201214861145115910.1016/j.cell.2012.02.035 22424226
    [Google Scholar]
  31. ReissA.B. GulkarovS. JacobB. Mitochondria in Alzheimer’s disease pathogenesis.Life202414219610.3390/life14020196 38398707
    [Google Scholar]
  32. LitwiniukA. Baranowska-BikA. DomańskaA. KaliszM. BikW. Contribution of mitochondrial dysfunction combined with NLRP3 inflammasome activation in selected neurodegenerative diseases.Pharmaceuticals20211412122110.3390/ph14121221 34959622
    [Google Scholar]
  33. WongK.Y. RoyJ. FungM.L. HengB.C. ZhangC. LimL.W. Relationships between mitochondrial dysfunction and neurotransmission failure in Alzheimer’s disease.Aging Dis.20201151291131610.14336/AD.2019.1125 33014538
    [Google Scholar]
  34. RheinV. SongX. WiesnerA. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice.Proc. Natl. Acad. Sci. USA200910647200572006210.1073/pnas.0905529106 19897719
    [Google Scholar]
  35. Hansson PetersenC.A. AlikhaniN. BehbahaniH. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae.Proc. Natl. Acad. Sci. USA200810535131451315010.1073/pnas.0806192105 18757748
    [Google Scholar]
  36. SwansonK.V. DengM. TingJ.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics.Nat. Rev. Immunol.201919847748910.1038/s41577‑019‑0165‑0 31036962
    [Google Scholar]
  37. YangY. WangH. KouadirM. SongH. ShiF. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors.Cell Death Dis.201910212810.1038/s41419‑019‑1413‑8 30755589
    [Google Scholar]
  38. HanS. HeZ. JacobC. Effect of increased IL-1β on expression of HK in Alzheimer’s disease.Int. J. Mol. Sci.2021223130610.3390/ijms22031306 33525649
    [Google Scholar]
  39. WolfA.J. ReyesC.N. LiangW. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan.Cell2016166362463610.1016/j.cell.2016.05.076 27374331
    [Google Scholar]
  40. HughesM.M. O’NeillL.A.J. Metabolic regulation of NLRP 3.Immunol. Rev.20182811889810.1111/imr.12608 29247992
    [Google Scholar]
  41. KelleyN. JeltemaD. DuanY. HeY. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation.Int. J. Mol. Sci.20192013332810.3390/ijms20133328 31284572
    [Google Scholar]
  42. ZhongZ. UmemuraA. Sanchez-LopezE. NF-κB restricts inflammasome activation via elimination of damaged mitochondria.Cell2016164589691010.1016/j.cell.2015.12.057 26919428
    [Google Scholar]
  43. NovoderezhkinaE.A. ZhivotovskyB.D. GogvadzeV.G. Induction of unspecific permeabilization of mitochondrial membrane and its role in cell death.Mol. Biol.20165015168 27028811
    [Google Scholar]
  44. HanS. HeZ. HuX. Inhibiting NLRP3 inflammasome activation by CY-09 helps to restore cerebral glucose metabolism in 3×Tg-AD mice.Antioxidants202312372210.3390/antiox12030722 36978970
    [Google Scholar]
  45. OlufunmilayoE.O. Gerke-DuncanM.B. HolsingerR.M.D. Oxidative stress and antioxidants in neurodegenerative disorders.Antioxidants202312251710.3390/antiox12020517 36830075
    [Google Scholar]
  46. MisraniA. TabassumS. YangL. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease.Front. Aging Neurosci.20211361758810.3389/fnagi.2021.617588 33679375
    [Google Scholar]
  47. KowalczykP. SulejczakD. KleczkowskaP. Mitochondrial oxidative stress—A causative factor and therapeutic target in many diseases.Int. J. Mol. Sci.202122241338410.3390/ijms222413384 34948180
    [Google Scholar]
  48. ToboreT.O. On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease.Neurol. Sci.20194081527154010.1007/s10072‑019‑03863‑x 30982132
    [Google Scholar]
  49. YangT. ZhangL. ShangY. Concurrent suppression of Aβ aggregation and NLRP3 inflammasome activation for treating Alzheimer’s disease.Chem. Sci.202213102971298010.1039/D1SC06071F 35382471
    [Google Scholar]
  50. UoselisL. NguyenT.N. LazarouM. Mitochondrial degradation: Mitophagy and beyond.Mol. Cell202383193404342010.1016/j.molcel.2023.08.021 37708893
    [Google Scholar]
  51. PradeepkiranJ.A. BaigJ. SelmanA. ReddyP.H. Mitochondria in aging and Alzheimer’s disease: Focus on mitophagy.Neuroscientist202330444045710.1177/10738584221139761 36597577
    [Google Scholar]
  52. SharmaB. PalD. SharmaU. KumarA. Mitophagy: An emergence of new player in Alzheimer’s disease.Front. Mol. Neurosci.20221592190810.3389/fnmol.2022.921908 35875669
    [Google Scholar]
  53. KimM.J. YoonJ.H. RyuJ.H. Mitophagy: A balance regulator of NLRP3 inflammasome activation.BMB Rep.2016491052953510.5483/BMBRep.2016.49.10.115 27439607
    [Google Scholar]
  54. KimM.J. BaeS.H. RyuJ.C. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages.Autophagy20161281272129110.1080/15548627.2016.1183081 27337507
    [Google Scholar]
  55. BlagovA.V. GrechkoA.V. NikiforovN.G. BorisovE.E. SadykhovN.K. OrekhovA.N. Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimer’s disease.Int. J. Mol. Sci.20222313695410.3390/ijms23136954 35805958
    [Google Scholar]
  56. YangD. YingJ. WangX. Mitochondrial dynamics: A key role in neurodegeneration and a potential target for neurodegenerative disease.Front. Neurosci.20211565478510.3389/fnins.2021.654785 33912006
    [Google Scholar]
  57. GuhaS. JohnsonG.V.W. NehrkeK. The crosstalk between pathological tau phosphorylation and mitochondrial dysfunction as a key to understanding and treating Alzheimer’s disease.Mol. Neurobiol.202057125103512010.1007/s12035‑020‑02084‑0 32851560
    [Google Scholar]
  58. BhatiaS. RawalR. SharmaP. SinghT. SinghM. SinghV. Mitochondrial dysfunction in Alzheimer’s disease: Opportunities for drug development.Curr. Neuropharmacol.202220467569210.2174/1570159X19666210517114016 33998995
    [Google Scholar]
  59. WangX. XueY. YaoY. PINK1 regulates mitochondrial fission/fusion and neuroinflammation in β-amyloid-induced Alzheimer’s disease models.Neurochem. Int.202215410529810.1016/j.neuint.2022.105298 35134462
    [Google Scholar]
  60. LindsayH.G. HendrixC.J. Gonzalez MurciaJ.D. HaynieC. WeberK.S. The role of atypical chemokine receptors in neuroinflammation and neurodegenerative disorders.Int. J. Mol. Sci.202324221649310.3390/ijms242216493 38003682
    [Google Scholar]
  61. VainchteinI.D. MolofskyA.V. Astrocytes and microglia: In sickness and in health.Trends Neurosci.202043314415410.1016/j.tins.2020.01.003 32044129
    [Google Scholar]
  62. CalsolaroV. EdisonP. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions.Alzheimers Dement.201612671973210.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  63. AgrawalM. SinghalM. PrajapatiB.G. ChaudharyH. JasoriaY. KumarB. Neuroinflammation in Alzheimer’s disease.In: Alzheimer’s Disease and Advanced Drug Delivery Strategies.Elsevier2024133210.1016/B978‑0‑443‑13205‑6.00003‑0
    [Google Scholar]
  64. KonsmanJ. Cytokines in the brain and neuroinflammation: We didn’t starve the fire!Pharmaceuticals202215214010.3390/ph15020140 35215252
    [Google Scholar]
  65. BarczukJ. SiweckaN. LusaW. Rozpędek-KamińskaW. KucharskaE. MajsterekI. Targeting NLRP3-mediated neuroinflammation in Alzheimer’s disease treatment.Int. J. Mol. Sci.20222316897910.3390/ijms23168979 36012243
    [Google Scholar]
  66. TangH. HarteM. Investigating markers of the NLRP3 inflammasome pathway in Alzheimer’s disease: A human post-mortem study.Genes20211211175310.3390/genes12111753 34828359
    [Google Scholar]
  67. Arango DuqueG. DescoteauxA. Macrophage cytokines: Involvement in immunity and infectious diseases.Front. Immunol.2014549110.3389/fimmu.2014.00491 25339958
    [Google Scholar]
  68. FinkelmanF.D. HolmesJ. KatonaI.M. Lymphokine control of in vivo immunoglobulin isotype selection.Annu. Rev. Immunol.19908130333310.1146/annurev.iy.08.040190.001511 1693082
    [Google Scholar]
  69. SuF. BaiF. ZhangZ. Inflammatory cytokines and alzheimer’s disease: A review from the perspective of genetic polymorphisms.Neurosci. Bull.201632546948010.1007/s12264‑016‑0055‑4 27568024
    [Google Scholar]
  70. MamsaR. PrabhavalkarK.S. BhattL.K. Crosstalk between NLRP3 inflammasome and calpain in Alzheimer’s disease.Eur. J. Neurosci.20235873719373110.1111/ejn.16139 37652164
    [Google Scholar]
  71. ZhangY. DongZ. SongW. NLRP3 inflammasome as a novel therapeutic target for Alzheimer’s disease.Signal Transduct. Target. Ther.2020513710.1038/s41392‑020‑0145‑7 32296063
    [Google Scholar]
  72. McManusR.M. KomesM.P. GriepA. NLRP3 regulates microglial metabolic function in Alzheimer’s disease.Alzheimers Dement.202218S4e06559810.1002/alz.065598
    [Google Scholar]
  73. Van ZellerM. DiasD. SebastiãoA.M. ValenteC.A. NLRP3 inflammasome: A starring role in amyloid-β- and tau-driven pathological events in Alzheimer’s disease.J. Alzheimers Dis.202183393996110.3233/JAD‑210268 34366341
    [Google Scholar]
  74. AkdisM. AabA. AltunbulakliC. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases.J. Allergy Clin. Immunol.20161384984101010.1016/j.jaci.2016.06.033 27577879
    [Google Scholar]
  75. GriffinW.S.T. ShengJ.G. RoystonM.C. Glial-neuronal interactions in Alzheimer’s disease: The potential role of a ‘cytokine cycle’ in disease progression.Brain Pathol.199881657210.1111/j.1750‑3639.1998.tb00136.x 9458167
    [Google Scholar]
  76. MrakR. GriffinW.S. Interleukin-1, neuroinflammation, and Alzheimer’s disease.Neurobiol. Aging200122690390810.1016/S0197‑4580(01)00287‑1 11754997
    [Google Scholar]
  77. AvitalA. GoshenI. KamslerA. Impaired interleukin‐1 signaling is associated with deficits in hippocampal memory processes and neural plasticity.Hippocampus200313782683410.1002/hipo.10135 14620878
    [Google Scholar]
  78. WoodroofeM.N. SarnaG.S. WadhwaM. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: Evidence of a role for microglia in cytokine production.J. Neuroimmunol.199133322723610.1016/0165‑5728(91)90110‑S 1874973
    [Google Scholar]
  79. WinterC.D. IannottiF. PringleA.K. TrikkasC. CloughG.F. ChurchM.K. A microdialysis method for the recovery of IL-1β, IL-6 and nerve growth factor from human brain in vivo .J. Neurosci. Methods20021191455010.1016/S0165‑0270(02)00153‑X 12234634
    [Google Scholar]
  80. ShaftelS.S. GriffinW.S.T. O’BanionM.K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: An evolving perspective.J. Neuroinflammation200851710.1186/1742‑2094‑5‑7 18302763
    [Google Scholar]
  81. RizzoF.R. MusellaA. De VitoF. Tumor necrosis factor and interleukin-1 β modulate synaptic plasticity during neuroinflammation.Neural Plast.2018201811210.1155/2018/8430123 29861718
    [Google Scholar]
  82. LonnemannN. HosseiniS. MarchettiC. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA202011750321453215410.1073/pnas.2009680117 33257576
    [Google Scholar]
  83. KerkisI. SilvaÁ.P. AraldiR.P. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions.Front. Immunol.202415140053310.3389/fimmu.2024.1400533 39015561
    [Google Scholar]
  84. KistnerT.M. PedersenB.K. LiebermanD.E. Interleukin 6 as an energy allocator in muscle tissue.Nat. Metab.20224217017910.1038/s42255‑022‑00538‑4 35210610
    [Google Scholar]
  85. UciechowskiP. DempkeW.C.M. Interleukin-6: A masterplayer in the cytokine network.Oncology202098313113710.1159/000505099 31958792
    [Google Scholar]
  86. RaniV. VermaR. KumarK. ChawlaR. Role of pro-inflammatory cytokines in Alzheimer’s disease and neuroprotective effects of pegylated self-assembled nanoscaffolds.Curr. Res. Pharmacol. Drug Discov.2023410014910.1016/j.crphar.2022.100149 36593925
    [Google Scholar]
  87. DursunE. Gezen-AkD. HanağasıH. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease.J. Neuroimmunol.2015283505710.1016/j.jneuroim.2015.04.014 26004156
    [Google Scholar]
  88. RajeshY. KannegantiT.D. Innate immune cell death in neuroinflammation and Alzheimer’s disease.Cells20221112188510.3390/cells11121885 35741014
    [Google Scholar]
  89. IhimS.A. AbubakarS.D. ZianZ. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment.Front. Immunol.20221391997310.3389/fimmu.2022.919973 36032110
    [Google Scholar]
  90. Fauteux-DanielS. Girard-Guyonvarc’hC. CarusoA. RodriguezE. GabayC. Detection of free bioactive IL-18 and IL-18BP in inflammatory disorders.Methods Mol. Biol.2023269126327710.1007/978‑1‑0716‑3331‑1_21 37355553
    [Google Scholar]
  91. Girard-Guyonvarc’hC. HarelM. GabayC. The role of interleukin 18/Interleukin 18-binding protein in adult-onset still’s disease and systemic juvenile idiopathic arthritis.J. Clin. Med.202211243010.3390/jcm11020430 35054124
    [Google Scholar]
  92. DetryS. AndriesJ. BlochY. GabayC. ClancyD.M. SavvidesS.N. Structural basis of human IL-18 sequestration by the decoy receptor IL-18 binding protein in inflammation and tumor immunity.J. Biol. Chem.2022298510190810.1016/j.jbc.2022.101908 35398099
    [Google Scholar]
  93. KaplanskiG. Interleukin‐18: Biological properties and role in disease pathogenesis.Immunol. Rev.2018281113815310.1111/imr.12616 29247988
    [Google Scholar]
  94. SutinenE.M. KorolainenM.A. HäyrinenJ. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells.Front. Cell. Neurosci.2014821410.3389/fncel.2014.00214 25147500
    [Google Scholar]
  95. SutinenE.M. PirttiläT. AndersonG. SalminenA. OjalaJ.O. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells.J. Neuroinflammation20129119910.1186/1742‑2094‑9‑199 22898493
    [Google Scholar]
  96. FresegnaD. BullittaS. MusellaA. Re-examining the role of TNF in MS pathogenesis and therapy.Cells2020910229010.3390/cells9102290 33066433
    [Google Scholar]
  97. JangD. LeeA.H. ShinH.Y. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics.Int. J. Mol. Sci.2021225271910.3390/ijms22052719 33800290
    [Google Scholar]
  98. Gonzalez CalditoN. Role of tumor necrosis factor-alpha in the central nervous system: A focus on autoimmune disorders.Front. Immunol.202314121344810.3389/fimmu.2023.1213448 37483590
    [Google Scholar]
  99. OlmosG. LladóJ. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity.Mediators Inflamm.2014201411210.1155/2014/861231 24966471
    [Google Scholar]
  100. PlantoneD. PardiniM. RighiD. MancoC. ColomboB.M. De StefanoN. The role of TNF-α in Alzheimer’s disease: A narrative review.Cells20231315410.3390/cells13010054 38201258
    [Google Scholar]
  101. ChengX. YangL. HeP. LiR. ShenY. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients.J. Alzheimers Dis.201019262163010.3233/JAD‑2010‑1253 20110607
    [Google Scholar]
  102. LiR. YangL. LindholmK. Tumor necrosis factor death receptor signaling cascade is required for amyloid-β protein-induced neuron death.J. Neurosci.20042471760177110.1523/JNEUROSCI.4580‑03.2004 14973251
    [Google Scholar]
  103. HeP. ZhongZ. LindholmK. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice.J. Cell Biol.2007178582984110.1083/jcb.200705042 17724122
    [Google Scholar]
  104. MontgomeryS.L. NarrowW.C. MastrangeloM.A. OlschowkaJ.A. O’BanionM.K. BowersW.J. Chronic neuron- and age-selective down-regulation of TNF receptor expression in triple-transgenic Alzheimer disease mice leads to significant modulation of amyloid- and Tau-related pathologies.Am. J. Pathol.201318262285229710.1016/j.ajpath.2013.02.030 23567638
    [Google Scholar]
  105. CuljakM. PerkovicM.N. UzunS. The association between TNF-alpha, IL-1 alpha and IL-10 with Alzheimer’s disease.Curr. Alzheimer Res.2021171197298410.2174/1567205017666201130092427 33256580
    [Google Scholar]
  106. HanC. ShengY. WangJ. Double‐negative T cells mediate M1 polarization of microglial cells via TNF‐α‐NLRP3 to aggravate neuroinflammation and cognitive impairment in Alzheimer’s disease mice.J. Cell. Physiol.2022237103860387110.1002/jcp.30839 35866513
    [Google Scholar]
  107. Torres-AcostaN. O’KeefeJ.H. O’KeefeE.L. IsaacsonR. SmallG. Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention.J. Alzheimers Dis.202078261962610.3233/JAD‑200711 33016914
    [Google Scholar]
  108. KummerK.K. ZeidlerM. KalpachidouT. KressM. Role of IL-6 in the regulation of neuronal development, survival and function.Cytokine202114415558210.1016/j.cyto.2021.155582 34058569
    [Google Scholar]
  109. XieL. LaiY. LeiF. LiuS. LiuR. WangT. Exploring the association between interleukin-1β and its interacting proteins in Alzheimer’s disease.Mol. Med. Rep.20151153219322810.3892/mmr.2015.3183 25585621
    [Google Scholar]
  110. ContiB. ParkL.C.H. CalingasanN.Y. Cultures of astrocytes and microglia express interleukin 18.Brain Res. Mol. Brain Res.1999671465210.1016/S0169‑328X(99)00034‑0 10101231
    [Google Scholar]
  111. PapadimitriouC. CelikkayaH. CosacakM.I. 3D culture method for Alzheimer’s disease modeling reveals interleukin-4 rescues Aβ42-Induced loss of human neural stem cell plasticity.Dev. Cell201846185101.e810.1016/j.devcel.2018.06.005 29974866
    [Google Scholar]
  112. SoosanabadiM. BayatH. KamaliK. SaliminejadK. BananM. Khorram KhorshidH. Association study of IL-4 -590 C/T and DDX39B -22 G/C polymorphisms with the risk of late-onset Alzheimer’s disease in Iranian population.Curr. Aging Sci.20158327628110.2174/187460980803151027125919 26265379
    [Google Scholar]
  113. PapadimitriouC. CelikkayaH. Ilyas CosacakM. BhattaraiP. LinW. Kuriakose ThomasA. Interleukin-4 restores neurogenic plasticity of the primary human neural stem cells through suppression of Kynurenic acid production upon Amyloid-beta42 toxicity.Preprint201710.1101/227306
    [Google Scholar]
  114. ShimizuE. KawaharaK. KajizonoM. SawadaM. NakayamaH. IL-4-induced selective clearance of oligomeric β-amyloid peptide(1-42) by rat primary type 2 microglia.J. Immunol.200818196503651310.4049/jimmunol.181.9.6503 18941241
    [Google Scholar]
  115. KawaharaK. SuenobuM. YoshidaA. Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice.Neuroscience201220724326010.1016/j.neuroscience.2012.01.049 22342341
    [Google Scholar]
  116. KiyotaT. OkuyamaS. SwanR.J. JacobsenM.T. GendelmanH.E. IkezuT. CNS expression of anti‐inflammatory cytokine interleukin‐4 attenuates Alzheimer’s disease‐like pathogenesis in APP+PS1 bigenic mice.FASEB J.20102483093310210.1096/fj.10‑155317 20371618
    [Google Scholar]
  117. MashkaryanV. SiddiquiT. PopovaS. Type 1 interleukin-4 signaling obliterates mouse astroglia in vivo but Not in vitro.Front. Cell Dev. Biol.2020811410.3389/fcell.2020.00114 32181251
    [Google Scholar]
  118. Dionisio-SantosD.A. BehrouziA. OlschowkaJ.A. O’BanionM.K. Evaluating the effect of interleukin-4 in the 3xTg mouse model of Alzheimer’s disease.Front. Neurosci.20201444110.3389/fnins.2020.00441 32528242
    [Google Scholar]
  119. SzczepanikA. FunesS. PetkoW. RingheimG.E. IL-4, IL-10 and IL-13 modulate Aβ(1–42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line.J. Neuroimmunol.20011131496210.1016/S0165‑5728(00)00404‑5 11137576
    [Google Scholar]
  120. StrleK. ZhouJ.H. ShenW.H. Interleukin-10 in the brain.Crit. Rev. Immunol.2001215427449 11942558
    [Google Scholar]
  121. D’AnnaL. Abu-RumeilehS. FabrisM. Serum interleukin-10 levels correlate with cerebrospinal fluid amyloid beta deposition in Alzheimer disease patients.Neurodegener. Dis.2017174-522723410.1159/000474940 28719891
    [Google Scholar]
  122. Sanchez-MolinaP. AlmoldaB. Giménez-LlortL. GonzálezB. CastellanoB. Chronic IL-10 overproduction disrupts microglia-neuron dialogue similar to aging, resulting in impaired hippocampal neurogenesis and spatial memory.Brain Behav. Immun.202210123124510.1016/j.bbi.2021.12.026 34990747
    [Google Scholar]
  123. PorroC. CianciulliA. PanaroM.A. The regulatory role of IL-10 in neurodegenerative diseases.Biomolecules2020107101710.3390/biom10071017 32659950
    [Google Scholar]
  124. CarliniV. NoonanD.M. AbdalalemE. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions.Front. Immunol.202314116106710.3389/fimmu.2023.1161067 37359549
    [Google Scholar]
  125. ZhengC. ZhouX.W. WangJ.Z. The dual roles of cytokines in Alzheimer’s disease: Update on interleukins, TNF-α, TGF-β and IFN-γ.Transl. Neurodegener.201651710.1186/s40035‑016‑0054‑4 27054030
    [Google Scholar]
  126. CacquevelM. LebeurrierN. ChéenneS. VivienD. Cytokines in neuroinflammation and Alzheimer’s disease.Curr. Drug Targets20045652953410.2174/1389450043345308 15270199
    [Google Scholar]
  127. HuY. ChenW. WuL. TGF-β1 restores hippocampal synaptic plasticity and memory in Alzheimer model via the PI3K/Akt/Wnt/β-Catenin signaling pathway.J. Mol. Neurosci.201967114214910.1007/s12031‑018‑1219‑7 30539409
    [Google Scholar]
  128. FangX.X. SunG.L. ZhouY. QiuY.H. PengY.P. TGF-β1 protection against Aβ1–42-induced hippocampal neuronal inflammation and apoptosis by TβR-I.Neuroreport201829214114610.1097/WNR.0000000000000940 29200096
    [Google Scholar]
  129. PonomarevE.D. MareszK. TanY. DittelB.N. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells.J. Neurosci.20072740107141072110.1523/JNEUROSCI.1922‑07.2007 17913905
    [Google Scholar]
  130. BoccardiV. WestmanE. PeliniL. Differential associations of IL-4 with hippocampal subfields in mild cognitive impairment and Alzheimer’s disease.Front. Aging Neurosci.20191043910.3389/fnagi.2018.00439 30705627
    [Google Scholar]
  131. BurmeisterA.R. MarriottI. The interleukin-10 family of cytokines and their role in the CNS.Front. Cell. Neurosci.20181245810.3389/fncel.2018.00458 30542269
    [Google Scholar]
  132. Guillot-SestierM.V. DotyK.R. GateD. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology.Neuron201585353454810.1016/j.neuron.2014.12.068 25619654
    [Google Scholar]
  133. VillapolS. Role of TGF-β Signaling in Neurogenic Regions After Brain Injury.IN: Trends in Cell Signaling Pathways in Neuronal Fate Decision.InTech201310.5772/53941
    [Google Scholar]
  134. KapoorM. ChinnathambiS. TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: A specialized Tau perspective.J. Neuroinflammation20232017210.1186/s12974‑023‑02751‑8 36915196
    [Google Scholar]
  135. NizamiS. Hall-RobertsH. WarrierS. CowleyS.A. Di DanielE. Microglial inflammation and phagocytosis in Alzheimer’s disease: Potential therapeutic targets.Br. J. Pharmacol.2019176183515353210.1111/bph.14618 30740661
    [Google Scholar]
  136. BroganP.A. HoferM. Kuemmerle-DeschnerJ.B. Rapid and sustained long‐term efficacy and safety of canakinumab in patients with cryopyrin‐associated periodic syndrome ages five years and younger.Arthritis Rheumatol.201971111955196310.1002/art.41004 31161734
    [Google Scholar]
  137. Efficacy, safety and tolerability of ACZ885 in pediatric patients with the following cryopyrin-associated periodic syndromes: Familial cold autoinflammatory syndrome, muckle-wells syndrome, or neonatal onset multisystem inflammatory disease.Patent NCT015763672018
  138. MelchiorriD. MerloS. MicallefB. BorgJ.J. DráfiF. Alzheimer’s disease and neuroinflammation: Will new drugs in clinical trials pave the way to a multi-target therapy?Front. Pharmacol.202314119641310.3389/fphar.2023.1196413 37332353
    [Google Scholar]
  139. Study of the efficacy and safety of various anti-inflammatory agents in participants with mild cognitive impairment or mild Alzheimer's disease.Patent NCT047954662024
  140. BartfaiT. LeesG.V. Alzheimer Drug Trials: Combination of Safe and efficacious biologicals to break the amyloidosis-neuroinflammation vicious cycle.ASN Neuro2020121175909142091855710.1177/1759091420918557 32290675
    [Google Scholar]
  141. Interleukin-1 receptor antagonist (IL-1RA) (anakinra) in severe systemic-onset juvenile idiopathic arthritis.Patent NCT003391572010
  142. VoetS. SrinivasanS. LamkanfiM. van LooG. Inflammasomes in neuroinflammatory and neurodegenerative diseases.EMBO Mol. Med.2019116e1024810.15252/emmm.201810248 31015277
    [Google Scholar]
  143. Rilonacept for treatment of cryopyrin-associated periodic syndromes (CAPS).Patent NCT002887042011
  144. SunE. MotolaniA. CamposL. LuT. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease.Int. J. Mol. Sci.20222316897210.3390/ijms23168972 36012242
    [Google Scholar]
  145. Safety and tolerability of etanercept in Alzheimer's disease (STEADI-09).Patent NCT010683532014
  146. Cognitive dysfunction and inflammation in depression: Experimental inhibition via infliximab.Patent NCT061365462025
  147. A study of XPro1595 in patients with early Alzheimer's disease with biomarkers of inflammation (MINDFuL).Patent NCT053189762025
  148. WangH.Y. PeiZ. XuQ. BrunelleL.A. BurnsL.H. ThorntonG.B. SavaDx, a novel plasma biomarker to detect Alzheimer’s disease, confirms mechanism of action of simufilam.Alzheimers Dement.202117S5e05438510.1002/alz.054385
    [Google Scholar]
  149. Simufilam 100 Mg for mild-to-moderate Alzheimer's disease (RETHINK-ALZ).Patent NCT049944832024
  150. DecourtB. WilsonJ. RitterA. MCLENA-1: A phase II clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to Alzheimer’s disease.Open Access J. Clin. Trials20201211310.2147/OAJCT.S221914 32123490
    [Google Scholar]
  151. MCLENA-2: A phase II clinical trial for the assessment of lenalidomide in patients with mild cognitive impairment due to Alzheimer's disease.Patent NCT061770282023
  152. A study of JNJ-55308942 in the treatment of bipolar depression.Patent NCT053282972025
  153. First time in human study evaluating the safety, tolerability, pharmacokinetics, pharmacodynamics and the effect of food of single assending doses of GSK1482160.Patent NCT008491342017
  154. NguyenL.T.N. NguyenH.D. KimY.J. Role of NLRP3 inflammasome in Parkinson’s disease and therapeutic considerations.J. Parkinsons Dis.20221272117213310.3233/JPD‑223290 35988226
    [Google Scholar]
  155. P2X7 receptor, inflammation and neurodegenerative diseases (NeuroInfiam).Patent NCT039186162019
  156. AdamuA. LiS. GaoF. XueG. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets.Front. Aging Neurosci.202416134798710.3389/fnagi.2024.1347987 38681666
    [Google Scholar]
  157. QinJ. MaZ. ChenX. ShuS. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts.Front. Neurol.202314110341610.3389/fneur.2023.1103416 36959826
    [Google Scholar]
  158. FleissB. Van SteenwinckelJ. BokobzaC.K. ShearerI. Ross-MunroE. GressensP. Microglia-mediated neurodegeneration in perinatal brain injuries.Biomolecules20211119910.3390/biom11010099 33451166
    [Google Scholar]
  159. YuY. ChenR. MaoK. DengM. LiZ. The role of glial cells in synaptic dysfunction: Insights into Alzheimer’s disease mechanisms.Aging Dis.202415245947910.14336/AD.2023.0718 37548934
    [Google Scholar]
  160. WangC. ZongS. CuiX. The effects of microglia-associated neuroinflammation on Alzheimer’s disease.Front. Immunol.202314111717210.3389/fimmu.2023.1117172 36911732
    [Google Scholar]
  161. YangJ. WiseL. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease.Front. Immunol.20201172410.3389/fimmu.2020.00724 32391019
    [Google Scholar]
  162. SongG.J. SukK. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases.Front. Aging Neurosci.2017913910.3389/fnagi.2017.00139 28555105
    [Google Scholar]
  163. ReidJ.K. KuipersH.F. She doesn’t even go here: The role of inflammatory astrocytes in CNS disorders.Front. Cell. Neurosci.20211570488410.3389/fncel.2021.704884 34539348
    [Google Scholar]
  164. RoßnerS. Lange-DohnaC. ZeitschelU. Perez-PoloJ.R. Alzheimer’s disease β‐secretase BACE1 is not a neuron‐specific enzyme.J. Neurochem.200592222623410.1111/j.1471‑4159.2004.02857.x 15663471
    [Google Scholar]
  165. GiovannoniF. QuintanaF.J. The role of astrocytes in CNS inflammation.Trends Immunol.202041980581910.1016/j.it.2020.07.007 32800705
    [Google Scholar]
  166. YanY-Q. MaC-G. DingZ-B. SongL-J. WangQ. KumarG. Astrocytes: A double-edged sword in neurodegenerative diseases.Neural Regen. Res.20211691702171010.4103/1673‑5374.306064 33510058
    [Google Scholar]
  167. KwonH.S. KohS.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes.Transl. Neurodegener.2020914210.1186/s40035‑020‑00221‑2 33239064
    [Google Scholar]
  168. ZangX. ChenS. ZhuJ. MaJ. ZhaiY. The emerging role of central and peripheral immune systems in neurodegenerative diseases.Front. Aging Neurosci.20221487213410.3389/fnagi.2022.872134 35547626
    [Google Scholar]
  169. SatarkerS. BojjaS.L. GurramP.C. MudgalJ. AroraD. NampoothiriM. Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders.Cells2022117113910.3390/cells11071139 35406702
    [Google Scholar]
  170. SunM. YouH. HuX. Microglia–Astrocyte interaction in neural development and neural pathogenesis.Cells20231215194210.3390/cells12151942 37566021
    [Google Scholar]
  171. FakhouryM. Microglia and astrocytes in Alzheimer’s disease: Implications for therapy.Curr. Neuropharmacol.201816550851810.2174/1570159X15666170720095240 28730967
    [Google Scholar]
  172. DaiD.L. LiM. LeeE.B. Human Alzheimer’s disease reactive astrocytes exhibit a loss of homeostastic gene expression.Acta Neuropathol. Commun.202311112710.1186/s40478‑023‑01624‑8 37533101
    [Google Scholar]
  173. PremanP. Alfonso-TrigueroM. AlberdiE. VerkhratskyA. ArranzA.M. Astrocytes in Alzheimer’s disease: Pathological significance and molecular pathways.Cells202110354010.3390/cells10030540 33806259
    [Google Scholar]
  174. Darvish KhademM. TabandehM.R. HaschemiA. KheirollahA. ShahriariA. Dimethyl itaconate reprograms neurotoxic to neuroprotective primary astrocytes through the regulation of NLRP3 inflammasome and NRF2/HO-1 pathways.Mol. Cell. Neurosci.202212210375810.1016/j.mcn.2022.103758 35868484
    [Google Scholar]
  175. GuoM.F. Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer’s disease mice via the downregulation of TLR4/Myd88/NF-κB pathway.J. Neuroimmunol.202034657728410.1016/j.jneuroim.2020.577284 32652366
    [Google Scholar]
  176. SarkarS. BiswasS.C. Astrocyte subtype-specific approach to Alzheimer’s disease treatment.Neurochem. Int.202114510495610.1016/j.neuint.2021.104956 33503465
    [Google Scholar]
  177. Santiago-BalmasedaA. Aguirre-OrozcoA. Valenzuela-ArzetaI.E. Neurodegenerative diseases: Unraveling the heterogeneity of astrocytes.Cells2024131192110.3390/cells13110921 38891053
    [Google Scholar]
  178. RathinamV.A.K. FitzgeraldK.A. Inflammasome complexes: Emerging mechanisms and effector functions.Cell2016165479280010.1016/j.cell.2016.03.046 27153493
    [Google Scholar]
  179. AsareY. ShnipovaM. ŽivkovićL. IKKβ binds NLRP3 providing a shortcut to inflammasome activation for rapid immune responses.Signal Transduct. Target. Ther.20227135510.1038/s41392‑022‑01189‑3 36257930
    [Google Scholar]
  180. MoloudizargariM. MoradkhaniF. AsghariN. NLRP inflammasome as a key role player in the pathogenesis of environmental toxicants.Life Sci.201923111658510.1016/j.lfs.2019.116585 31226415
    [Google Scholar]
  181. ChenL. CaoS. LinZ. HeS. ZuoJ. NOD-like receptors in autoimmune diseases.Acta Pharmacol. Sin.202142111742175610.1038/s41401‑020‑00603‑2 33589796
    [Google Scholar]
  182. DuggerB.N. DicksonD.W. Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201797a02803510.1101/cshperspect.a028035 28062563
    [Google Scholar]
  183. SinghJ. HabeanM.L. PanickerN. Inflammasome assembly in neurodegenerative diseases.Trends Neurosci.2023461081483110.1016/j.tins.2023.07.009 37633753
    [Google Scholar]
  184. SutterwalaF.S. HaaskenS. CasselS.L. Mechanism of NLRP3 inflammasome activation.Ann. N. Y. Acad. Sci.201413191829510.1111/nyas.12458 24840700
    [Google Scholar]
  185. SharifH. WangL. WangW.L. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome.Nature2019570776133834310.1038/s41586‑019‑1295‑z 31189953
    [Google Scholar]
  186. AndreevaL. DavidL. RawsonS. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation.Cell20211842662996312.e2210.1016/j.cell.2021.11.011 34861190
    [Google Scholar]
  187. HochheiserI.V. PilslM. HageluekenG. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3.Nature2022604790418418910.1038/s41586‑022‑04467‑w 35114687
    [Google Scholar]
  188. OhtoU. KamitsukasaY. IshidaH. Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation.Proc. Natl. Acad. Sci. USA202211911e212135311910.1073/pnas.2121353119 35254907
    [Google Scholar]
  189. DekkerC. MattesH. WrightM. Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition.J. Mol. Biol.20214332416730910.1016/j.jmb.2021.167309 34687713
    [Google Scholar]
  190. HuZ. YanC. LiuP. HuangZ. MaR. ZhangC. Crystal structure of NLRC4 reveals its autoinhibition mechanism.Science2013341614217217510.1126/science.1236381 23765277
    [Google Scholar]
  191. MaekawaS. OhtoU. ShibataT. MiyakeK. ShimizuT. Crystal structure of NOD2 and its implications in human disease.Nat. Commun.2016711181310.1038/ncomms11813 27283905
    [Google Scholar]
  192. ZhangL. ChenS. RuanJ. WuJ. TongA.B. YinQ. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization.Science2015350625940440910.1126/science.aac5789 26449474
    [Google Scholar]
  193. HuZ. ZhouQ. ZhangC. FanS. ChengW. ZhaoY. Structural and biochemical basis for induced self-propagation of NLRC4.Science2015350625939940410.1126/science.aac5489 26449475
    [Google Scholar]
  194. FuJ. WuH. Structural mechanisms of NLRP3 inflammasome assembly and activation.Annu. Rev. Immunol.202341130131610.1146/annurev‑immunol‑081022‑021207 36750315
    [Google Scholar]
  195. SaresellaM. La RosaF. PianconeF. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease.Mol. Neurodegener.20161112310.1186/s13024‑016‑0088‑1 26939933
    [Google Scholar]
  196. BaiH. ZhangQ. Activation of NLRP3 inflammasome and onset of Alzheimer’s disease.Front. Immunol.20211270128210.3389/fimmu.2021.701282 34381452
    [Google Scholar]
  197. ShimadaK. CrotherT.R. KarlinJ. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.Immunity201236340141410.1016/j.immuni.2012.01.009 22342844
    [Google Scholar]
  198. SharmaB. SatijaG. MadanA. Role of NLRP3 inflammasome and its inhibitors as emerging therapeutic drug candidate for Alzheimer’s disease: A review of mechanism of activation, regulation, and inhibition.Inflammation2023461568710.1007/s10753‑022‑01730‑0 36006570
    [Google Scholar]
  199. MurphyN. CowleyT.R. RichardsonJ.C. The neuroprotective effect of a specific P2X7 receptor antagonist derives from its ability to inhibit assembly of the NLRP3 inflammasome in glial cells.Brain Pathol.201222329530610.1111/j.1750‑3639.2011.00531.x 21933296
    [Google Scholar]
  200. QueX. ZhengS. SongQ. PeiH. ZhangP. Fantastic voyage: The journey of NLRP3 inflammasome activation.Genes Dis.202411281982910.1016/j.gendis.2023.01.009 37692521
    [Google Scholar]
  201. ChenY. YeX. EscamesG. The NLRP3 inflammasome: Contributions to inflammation-related diseases.Cell. Mol. Biol. Lett.20232815110.1186/s11658‑023‑00462‑9 37370025
    [Google Scholar]
  202. MariathasanS. WeissD.S. NewtonK. Cryopyrin activates the inflammasome in response to toxins and ATP.Nature2006440708122823210.1038/nature04515 16407890
    [Google Scholar]
  203. ErdeiJ. TóthA. BaloghE. Induction of NLRP3 inflammasome activation by heme in human endothelial cells.Oxid. Med. Cell. Longev.201820181431081610.1155/2018/4310816 29743981
    [Google Scholar]
  204. HornungV. BauernfeindF. HalleA. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization.Nat. Immunol.20089884785610.1038/ni.1631 18604214
    [Google Scholar]
  205. EigenbrodT. DalpkeA.H. Bacterial RNA: An underestimated stimulus for innate immune responses.J. Immunol.2015195241141810.4049/jimmunol.1500530 26138638
    [Google Scholar]
  206. RogiersO. FrisingU.C. KucharíkováS. Jabra-RizkM.A. van LooG. Van DijckP. Candidalysin crucially contributes to nlrp3 inflammasome activation by candida albicans hyphae.mBio201910110.1128/mBio.02221‑18 30622184
    [Google Scholar]
  207. MathurA. FengS. HaywardJ.A. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome.Nat. Microbiol.20184236237410.1038/s41564‑018‑0318‑0 30531979
    [Google Scholar]
  208. ManS.M. KarkiR. SasaiM. IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase-11-NLRP3 inflammasomes.Cell20161672382396.e1710.1016/j.cell.2016.09.012 27693356
    [Google Scholar]
  209. ShenoyA.R. WellingtonD.A. KumarP. KassaH. BoothC.J. CresswellP. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals.Science2012336608048148510.1126/science.1217141 22461501
    [Google Scholar]
  210. AccogliT. HibosC. VegranF. Canonical and non-canonical functions of NLRP3.J. Adv. Res.20235313715110.1016/j.jare.2023.01.001 36610670
    [Google Scholar]
  211. Bibo-VerdugoB. SnipasS.J. KoltS. PorebaM. SalvesenG.S. Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11.J. Biol. Chem.202029532112921130210.1074/jbc.RA120.014259 32554464
    [Google Scholar]
  212. EvavoldC.L. RuanJ. TanY. XiaS. WuH. KaganJ.C. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages.Immunity20184813544.e610.1016/j.immuni.2017.11.013 29195811
    [Google Scholar]
  213. StarobovaH. NadarE.I. VetterI. The NLRP3 inflammasome: Role and therapeutic potential in pain treatment.Front. Physiol.202011101610.3389/fphys.2020.01016 32973552
    [Google Scholar]
  214. GaidtM.M. EbertT.S. ChauhanD. Human monocytes engage an alternative inflammasome pathway.Immunity201644483384610.1016/j.immuni.2016.01.012 27037191
    [Google Scholar]
  215. ZewingerS. ReiserJ. JankowskiV. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation.Nat. Immunol.2020211304110.1038/s41590‑019‑0548‑1 31819254
    [Google Scholar]
  216. GaoY. YuS. ChenM. cFLIPS regulates alternative NLRP3 inflammasome activation in human monocytes.Cell. Mol. Immunol.202320101203121510.1038/s41423‑023‑01077‑y 37591930
    [Google Scholar]
  217. kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New insights on NLRP3 inflammasome: Mechanisms of activation, inhibition, and epigenetic regulation.J. Neuroimmune Pharmacol.2024191710.1007/s11481‑024‑10101‑5 38421496
    [Google Scholar]
  218. AdinolfiE. GiulianiA.L. De MarchiE. PegoraroA. OrioliE. Di VirgilioF. The P2X7 receptor: A main player in inflammation.Biochem. Pharmacol.201815123424410.1016/j.bcp.2017.12.021 29288626
    [Google Scholar]
  219. BeamerE. KuchukullaM. BoisonD. EngelT. ATP and adenosine—Two players in the control of seizures and epilepsy development.Prog. Neurobiol.202120410210510.1016/j.pneurobio.2021.102105 34144123
    [Google Scholar]
  220. FerrariD. PizziraniC. AdinolfiE. The P2X7 receptor: A key player in IL-1 processing and release.J. Immunol.200617673877388310.4049/jimmunol.176.7.3877 16547218
    [Google Scholar]
  221. ZhangW.J. Activation of P2×7 receptor promotes the invasion and migration of colon cancer cells via the STAT3 signaling.Front. Cell Dev. Biol.2020858655510.3389/fcell.2020.586555 33330466
    [Google Scholar]
  222. RonningK.E. Déchelle-MarquetP.A. CheY. GuillonneauX. SennlaubF. DelarasseC. The P2X7 receptor, a multifaceted receptor in Alzheimer’s disease.Int. J. Mol. Sci.202324141174710.3390/ijms241411747 37511507
    [Google Scholar]
  223. PaikS. KimJ.K. SilwalP. SasakawaC. JoE.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation.Cell. Mol. Immunol.20211851141116010.1038/s41423‑021‑00670‑3 33850310
    [Google Scholar]
  224. Babajide RowaiyeA. OluwasunmibareO.S. Suleiman AbubakarU. AondonaP. Chinonye EmenyeonuL. AgbalalahT. The NLRP3 inflammasome as a target for antiinflammatory drugs.In: The NLRP3 Inflammasome: An Attentive Arbiter of Inflammatory Response. Bentham Books202410.2174/9789815223941124010009
    [Google Scholar]
  225. Sidoryk-WęgrzynowiczM. StrużyńskaL. Astroglial and microglial purinergic P2X7 receptor as a major contributor to neuroinflammation during the course of multiple sclerosis.Int. J. Mol. Sci.20212216840410.3390/ijms22168404 34445109
    [Google Scholar]
  226. von Mücke-HeimI.A. MartinJ. UhrM. RiesC. DeussingJ.M. The human P2X7 receptor alters microglial morphology and cytokine secretion following immunomodulation.Front. Pharmacol.202314114819010.3389/fphar.2023.1148190 37101546
    [Google Scholar]
  227. TaoB. PeiJ. LiH. Inhibition of P2X7R alleviates neuroinflammation and brain edema after traumatic brain injury by suppressing the NF-κB/NLRP3 inflammasome pathway.J. Neurorestoratology202412210010610.1016/j.jnrt.2024.100106
    [Google Scholar]
  228. IllesP. P2X7 receptors amplify CNS damage in neurodegenerative diseases.Int. J. Mol. Sci.20202117599610.3390/ijms21175996 32825423
    [Google Scholar]
  229. ParvathenaniL.K. TertyshnikovaS. GrecoC.R. RobertsS.B. RobertsonB. PosmanturR. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease.J. Biol. Chem.200327815133091331710.1074/jbc.M209478200 12551918
    [Google Scholar]
  230. LeeH.G. WonS.M. GwagB.J. LeeY.B. Microglial P2X 7 receptor expression is accompanied by neuronal damage in the cerebral cortex of the APP swe/PS1dE9 mouse model of Alzheimer’s disease.Exp. Mol. Med.201143171410.3858/emm.2011.43.1.001 21088470
    [Google Scholar]
  231. BrucatoA. ImazioM. GattornoM. Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence.JAMA2016316181906191210.1001/jama.2016.15826 27825009
    [Google Scholar]
  232. RidkerP.M. EverettB.M. ThurenT. Antiinflammatory therapy with canakinumab for atherosclerotic disease.N. Engl. J. Med.2017377121119113110.1056/NEJMoa1707914 28845751
    [Google Scholar]
  233. KleinA.L. ImazioM. BrucatoA. RHAPSODY: Rationale for and design of a pivotal Phase 3 trial to assess efficacy and safety of rilonacept, an interleukin-1α and interleukin-1β trap, in patients with recurrent pericarditis.Am. Heart J.2020228819010.1016/j.ahj.2020.07.004 32866928
    [Google Scholar]
  234. MackayA. VelcickyJ. GommermannN. Discovery of NP3-253, a potent brain penetrant inhibitor of the NLRP3 inflammasome.J. Med. Chem.20246723207802079810.1021/acs.jmedchem.4c02350 39574318
    [Google Scholar]
  235. KimE.Y. ImJ.H. HanJ. ChoW.J. Structure-based design and synthesis of sulfonylureas as novel NLRP3 inhibitors for Alzheimer’s disease.Bioorg. Med. Chem. Lett.20249912962210.1016/j.bmcl.2024.129622 38244940
    [Google Scholar]
  236. BibyS. MondalP. XuY. Functional characterization of an arylsulfonamide-based small-molecule inhibitor of the NLRP3 inflammasome.ACS Chem. Neurosci.202415193576358610.1021/acschemneuro.4c00512 39297418
    [Google Scholar]
  237. GhoshP. SinghR. ChatterjeeC. KumarA. SinghS.K. Computational screening of coumarin derivatives as inhibitors of the NACHT domain of NLRP3 inflammasome for the treatment of Alzheimer’s disease.J. Biomol. Struct. Dyn.20254352187220310.1080/07391102.2023.2294173 38116751
    [Google Scholar]
  238. HaseebM. JavaidN. YasmeenF. Novel small-molecule inhibitor of NLRP3 inflammasome reverses cognitive impairment in an Alzheimer’s disease model.ACS Chem. Neurosci.202213681883310.1021/acschemneuro.1c00831 35196855
    [Google Scholar]
  239. KuwarR. RolfeA. DiL. A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer’s disease transgenic mice.J. Alzheimers Dis.20218241769178310.3233/JAD‑210400 34219728
    [Google Scholar]
  240. HartmanG. HumphriesP. HughesR. The discovery of novel and potent indazole NLRP3 inhibitors enabled by DNA-encoded library screening.Bioorg. Med. Chem. Lett.202410212967510.1016/j.bmcl.2024.129675 38417632
    [Google Scholar]
  241. JhaD BakkerENTP KumarR Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer’s disease.J Neurochem2023jnc.1578810.1111/jnc.15788 36802053
    [Google Scholar]
  242. XuY. XuY. BlevinsH. Development of sulfonamide-based NLRP3 inhibitors: Further modifications and optimization through structure-activity relationship studies.Eur. J. Med. Chem.202223811446810.1016/j.ejmech.2022.114468 35635948
    [Google Scholar]
  243. KuwarR. RolfeA. DiL. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury.J. Neuroinflammation20191618110.1186/s12974‑019‑1471‑y 30975164
    [Google Scholar]
  244. ZhengJ. JiangZ. SongY. 3,4-Methylenedioxy-β-nitrostyrene alleviates dextran sulfate sodium-induced mouse colitis by inhibiting the NLRP3 inflammasome.Front. Pharmacol.20221386622810.3389/fphar.2022.866228 35784693
    [Google Scholar]
  245. ZhangY. LinZ. ChenD. HeY. CY-09 attenuates the progression of osteoarthritis via inhibiting NLRP3 inflammasome-mediated pyroptosis.Biochem. Biophys. Res. Commun.202155311912510.1016/j.bbrc.2021.03.055 33765556
    [Google Scholar]
  246. YuJ. ZhaoZ. LiY. ChenJ. HuangN. LuoY. Role of NLRP3 in Parkinson’s disease: Specific activation especially in dopaminergic neurons.Heliyon2024107e2883810.1016/j.heliyon.2024.e28838 38596076
    [Google Scholar]
  247. LiJ. ZhuangL. LuoX. LiangJ. SunE. HeY. Protection of MCC950 against Alzheimer’s disease via inhibiting neuronal pyroptosis in SAMP8 mice.Exp. Brain Res.2020238112603261410.1007/s00221‑020‑05916‑6 32892233
    [Google Scholar]
  248. DempseyC. Rubio AraizA. BrysonK.J. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice.Brain Behav. Immun.20176130631610.1016/j.bbi.2016.12.014 28003153
    [Google Scholar]
  249. DanielsM.J.D. Rivers-AutyJ. SchillingT. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models.Nat. Commun.2016711250410.1038/ncomms12504 27509875
    [Google Scholar]
  250. SomaJ. SugawaraT. HuangY.D. NakajimaJ. KawamuraM. Tranilast slows the progression of advanced diabetic nephropathy.Nephron J.200292369369810.1159/000064071 12372957
    [Google Scholar]
  251. HuangY. JiangH. ChenY. Tranilast directly targets NLRP 3 to treat inflammasome‐driven diseases.EMBO Mol. Med.2018104e868910.15252/emmm.201708689 29531021
    [Google Scholar]
  252. Hongmei Song PUMCH. A clinical study of tranilast in the treatment of Cryopyrin-Associated Periodic Syndrome (CAPS).Patent NCT039231402019
  253. KlückV. JansenT.L.T.A. JanssenM. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2a trial.Lancet Rheumatol.202025e270e28010.1016/S2665‑9913(20)30065‑5 33005902
    [Google Scholar]
  254. Olatec Therapeutics LLC. Study of dapansutrile tablets in subjects with an acute gout flare.Patent NCT056585752024
  255. Efficacy, safety, tolerability, pharmacokinetics, and pharmacodynamics of ZYIL1 in patients with amyotrophic lateral sclerosis.Patent NCT059810402024
  256. Study of efficacy, safety and tolerability of DFV890 in patients with knee osteoarthritis.Patent NCT048862582025
  257. A study to evaluate VTX2735 in patients with cryopyrinassociated periodic syndrome (explore).Patent NCT058127812024
  258. Effects of NT-0796 in obese participants at risk of cardiovascular disease.Patent NCT061294092024
  259. ZhangX. WangZ. ZhengY. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review).Int. J. Mol. Med.20235143510.3892/ijmm.2023.5238 36960868
    [Google Scholar]
  260. Safety and efficacy of adding intravenous N-acetyl cysteine in colon surgeries.Patent NCT035894952018
    [Google Scholar]
  261. Safety and tolerability, pharmacokinetic and pharmacodynamic study with inzomelid.Patent NCT040150762020
    [Google Scholar]
  262. OronskyB. ReidT.R. LarsonC. REPLATINUM Phase III randomized study: RRx-001 + platinum doublet versus platinum doublet in third-line small cell lung cancer.Future Oncol.201915303427343310.2217/fon‑2019‑0317 31509028
    [Google Scholar]
  263. JayabalanN. OronskyB. CabralesP. A review of RRx-001: A late-stage multi-indication inhibitor of NLRP3 activation and chronic inflammation.Drugs202383538940210.1007/s40265‑023‑01838‑z 36920652
    [Google Scholar]
  264. RRx-001 sequentially with a platinum doublet or a platinum doublet in third-line or beyond in patients with small cell lung cancer (REPLATINUM).Patent NCT036999562024
/content/journals/cnsnddt/10.2174/0118715273377780250505115039
Loading
/content/journals/cnsnddt/10.2174/0118715273377780250505115039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test