Skip to content
2000
Volume 24, Issue 8
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273366223250302092948
2025-03-07
2025-10-25
Loading full text...

Full text loading...

/deliver/fulltext/cnsnddt/24/8/CNSNDDT-24-8-01.html?itemId=/content/journals/cnsnddt/10.2174/0118715273366223250302092948&mimeType=html&fmt=ahah

References

  1. WillisA.W. RobertsE. BeckJ.C. Group, on behalf of the P. F. P. npj Park.Dis20228170
    [Google Scholar]
  2. Bandres-CigaS. Diez-FairenM. KimJ.J. SingletonA.B. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine.Neurobiol. Dis.202013710478210.1016/j.nbd.2020.104782 31991247
    [Google Scholar]
  3. GrennF.P. KimJ.J. MakariousM.B. The Parkinson’s disease genome‐wide association study locus browser.Mov. Disord.202035112056206710.1002/mds.28197 32864809
    [Google Scholar]
  4. YuanX. TianY. LiuC. ZhangZ. Environmental factors in Parkinson’s disease: New insights into the molecular mechanisms.Toxicol. Lett.202235611010.1016/j.toxlet.2021.12.003 34864130
    [Google Scholar]
  5. DayJ.O. MullinS. The genetics of Parkinson’s disease and implications for clinical practice.Genes2021127100610.3390/genes12071006
    [Google Scholar]
  6. SkouL.D. JohansenS.K. OkarmusJ. MeyerM. Pathogenesis of DJ-1/PARK7-mediated Parkinson’s disease.Cells202413429610.3390/cells13040296
    [Google Scholar]
  7. StykelM.G. RyanS.D. Nitrosative stress in Parkinson’s disease. npj Park.Dis20228810410.1038/s41531‑022‑00370‑3
    [Google Scholar]
  8. RiedererP. HorowskiR. L-DOPA-therapy in Parkinson’s disease: Some personal reflections on L-DOPA therapy from Vienna and Berlin.J. Neural Transm.2023130111323133510.1007/s00702‑023‑02692‑9 37796288
    [Google Scholar]
  9. Pardo-MorenoT. García-MoralesV. Suleiman-MartosS. Current treatments and new, tentative therapies for Parkinson’s disease.Pharmaceutics202315377010.3390/pharmaceutics15030770
    [Google Scholar]
  10. MurakamiH. ShiraishiT. UmeharaT. OmotoS. IguchiY. Recent advances in drug therapy for Parkinson’s disease.Intern. Med.2023621334210.2169/internalmedicine.8940‑21 35110492
    [Google Scholar]
  11. Gonzalez-LatapiP. BhowmickS.S. SaranzaG. FoxS.H. Non-dopaminergic treatments for motor control in Parkinson’s disease: An update.CNS Drugs202034101025104410.1007/s40263‑020‑00754‑0 32785890
    [Google Scholar]
  12. TempleS. Advancing cell therapy for neurodegenerative diseases.Cell Stem Cell202330551252910.1016/j.stem.2023.03.017 37084729
    [Google Scholar]
  13. ParmeraJ.B. OliveiraM.C.B. RodriguesR.D. CoutinhoA.M. Progressive supranuclear palsy and corticobasal degeneration: Novel clinical concepts and advances in biomarkers.Arq. Neuropsiquiatr.2022805 suppl 112613610.1590/0004‑282x‑anp‑2022‑s134 35976324
    [Google Scholar]
  14. GeutH. HeppD.H. FonckeE. Neuropathological correlates of parkinsonian disorders in a large Dutch autopsy series.Acta Neuropathol. Commun.2020813910.1186/s40478‑020‑00914‑9 32216828
    [Google Scholar]
  15. Dong-ChenX. YongC. YangX. Chen-YuS.T. Li-HuaP. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.2023817310.1038/s41392‑023‑01353‑3
    [Google Scholar]
  16. MirandaD.B.R. GoldmanS.M. MillerG.W. GreenamyreJ.T. DorseyE.R. Preventing parkinson’s disease: An environmental agenda.J. Parkinsons Dis.2022121456810.3233/JPD‑212922 34719434
    [Google Scholar]
  17. JinS. ZhangL. WangL. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine.Biomed. Pharmacother.202316511521510.1016/j.biopha.2023.115215 37494786
    [Google Scholar]
  18. ZhouZ.D. YiL.X. WangD.Q. LimT.M. TanE.K. Role of dopamine in the pathophysiology of Parkinson’s disease.Transl. Neurodegener.20231214410.1186/s40035‑023‑00378‑6
    [Google Scholar]
  19. AradiS.D. HauserR.A. Medical management and prevention of motor complications in Parkinson’s disease.Neurotherapeutics20201741339136510.1007/s13311‑020‑00889‑4 32761324
    [Google Scholar]
  20. PaulA. YadavK.S. Parkinson’s disease: Current drug therapy and unraveling the prospects of nanoparticles.J. Drug Deliv. Sci. Technol.20205810179010.1016/j.jddst.2020.101790
    [Google Scholar]
  21. Hernández-Parra H, Cortés H, Avalos-Fuentes JA, Del Prado-Audelo M, Florán B, Leyva-Gómez G, Sharifi-Rad J, Cho WC. Repositioning of drugs for Parkinson’s disease and pharmaceutical nanotechnology tools for their optimization.J. Nanobiotechnol.202220141310.1186/s12951‑022‑01612‑5 36109747
    [Google Scholar]
  22. GaoX-Y. YangT. GuY. SunX-H. Mitochondrial dysfunction in Parkinson’s disease: From mechanistic insights to therapy.Front. Aging Neurosci.20221488550010.3389/fnagi.2022.885500
    [Google Scholar]
  23. RamezaniM. Wagenknecht-WiesnerA. WangT. HolowkaD.A. EliezerD. BairdB.A. Alpha synuclein modulates mitochondrial Ca2+ uptake from ER during cell stimulation and under stress conditions.bioRxiv20231910.1101/2023.04.23.537965
    [Google Scholar]
  24. SongJ. XiaoL. ZhangZ. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging.Front. Cell Dev. Biol.2024121347286
    [Google Scholar]
  25. TabibzadehS. Role of autophagy in aging: The good, the bad, and the ugly.Aging Cell2023221e1375310.1111/acel.13753
    [Google Scholar]
  26. ZhangK. ZhuS. LiJ. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson’s disease.Acta Pharm. Sin. B202111103015303410.1016/j.apsb.2021.02.016 34729301
    [Google Scholar]
  27. LiJ. CaoF. YinH. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑2 32015325
    [Google Scholar]
  28. Bustamante-BarrientosF.A. Luque-CamposN. ArayaM.J. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells.J. Transl. Med.202321161310.1186/s12967‑023‑04493‑w 36593497
    [Google Scholar]
  29. FuenteD.A.G. PelucchiS. MertensJ. LucaD.M. MauceriD. MarcelloE. Novel therapeutic approaches to target neurodegeneration.Br. J. Pharmacol.2023180131651167310.1111/bph.16078 36965025
    [Google Scholar]
  30. RyuD.W. HanK. ChoA.H. Mortality and causes of death in patients with Parkinson’s disease: A nationwide population-based cohort study.Front. Neurol.2023141910.3389/fneur.2023.1236296
    [Google Scholar]
  31. ShenY. LvQ. XieW. Circadian disruption and sleep disorders in neurodegeneration.Transl. Neurodegener.2023121810.1186/s40035‑023‑00340‑6 36782262
    [Google Scholar]
  32. RameshS. ArachchigeA.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature.AIMS Neurosci.202310320023110.3934/Neuroscience.2023017 37841347
    [Google Scholar]
  33. MasatoA. PlotegherN. BoassaD. BubaccoL. Impaired dopamine metabolism in Parkinson’s disease pathogenesis.Mol. Neurodegener.20191413510.1186/s13024‑019‑0332‑6 30630532
    [Google Scholar]
  34. SivagurunathanN. GnanasekaranP. CalivarathanL. Mitochondrial Toxicant-Induced Neuronal Apoptosis in Parkinson’s Disease: What We Know so Far.Degener. Neurol. Neuromuscul. Dis.20231311310.2147/DNND.S361526 36726995
    [Google Scholar]
  35. EbadpourN MahmoudiM KhederKR From mitochondrial dysfunction to neuroinflammation in Parkinson’s disease: Pathogenesis and mitochondrial therapeutic approaches.Int Immunopharmacol2024142Pt A11301510.1016/j.intimp.2024.11301539222583
    [Google Scholar]
  36. KwonD.K. KwatraM. WangJ. KoH.S. Levodopa-induced dyskinesia in Parkinson’s disease: Pathogenesis and emerging treatment strategies.Cells20221123373610.3390/cells11233736
    [Google Scholar]
  37. TortiM. BraviD. VaccaL. StocchiF. Are all dopamine agonists essentially the same?Drugs201979769370310.1007/s40265‑019‑01103‑2 30968290
    [Google Scholar]
  38. TanY.Y. JennerP. ChenS.D. Monoamine oxidase-b inhibitors for the treatment of Parkinson’s disease: Past, present, and future.J. Parkinsons Dis.202212247749310.3233/JPD‑212976 34957948
    [Google Scholar]
  39. RascolO. FabbriM. PoeweW. Amantadine in the treatment of Parkinson’s disease and other movement disorders.Lancet Neurol.202120121048105610.1016/S1474‑4422(21)00249‑0 34678171
    [Google Scholar]
  40. HauserR.A. WalshR.R. PahwaR. ChernickD. FormellaA.E. Amantadine ER (Gocovri®) significantly increases on time without any dyskinesia: Pooled analyses from pivotal trials in parkinson’s disease.Front. Neurol.20211264570610.3389/fneur.2021.645706
    [Google Scholar]
  41. SquibbB-M 202311
  42. LiX. DongZ.Y. DongM. ChenL. Early dopaminergic replacement treatment initiation benefits motor symptoms in patients with Parkinson’s disease.Front. Hum. Neurosci.202418132532410.3389/fnhum.2024.1325324
    [Google Scholar]
  43. ReichmannH. Real‐world considerations regarding the use of the combination of levodopa, carbidopa, and entacapone (Stalevo®) in Parkinson’s disease.Eur. J. Neurol.202330S2152010.1111/ene.15992 37489705
    [Google Scholar]
  44. FanY. Winanto; Ng, S.-Y.Transl. Neurodegener.20209210.1186/s40035‑019‑0180‑x 31911835
    [Google Scholar]
  45. SharmaV.D. PatelM. MiocinovicS. Surgical treatment of parkinson’s disease: Devices and lesion approaches.Neurotherapeutics20201741525153810.1007/s13311‑020‑00939‑x 33118132
    [Google Scholar]
  46. ServaS.N. BernsteinJ. ThompsonJ.A. KernD.S. OjemannS.G. An update on advanced therapies for Parkinson’s disease: From gene therapy to neuromodulation.Front. Surg.2022986392110.3389/fsurg.2022.863921
    [Google Scholar]
  47. JingX.Z. YuanX.Z. LuoX. ZhangS.Y. WangX.P. An update on nondopaminergic treatments for motor and non-motor symptoms of Parkinson’s disease.Curr. Neuropharmacol.20232181806182610.2174/1570159X20666220222150811 35193486
    [Google Scholar]
  48. BoseA. PetskoG.A. StuderL. Induced pluripotent stem cells: A tool for modeling Parkinson’s disease.Trends Neurosci.202245860862010.1016/j.tins.2022.05.001 35667922
    [Google Scholar]
  49. DoiD. MagotaniH. KikuchiT. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease.Nat. Commun.2020111336910.1038/s41467‑020‑17165‑w 32632153
    [Google Scholar]
  50. PengY. LiouB. LinY. MayhewC.N. FlemingS.M. SunY. iPSC-derived neural precursor cells engineering GBA1 recovers acid β-glucosidase deficiency and diminishes α-synuclein and neuropathology.Mol. Ther. Methods Clin. Dev.20232918520110.1016/j.omtm.2023.03.007 37063480
    [Google Scholar]
  51. ZhangX. HuD. ShangY. QiX. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases.Biochim. Biophys. Acta Mol. Basis Dis.20201866416543110.1016/j.bbadis.2019.03.004 30898538
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273366223250302092948
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test