Current Neurovascular Research - Volume 8, Issue 3, 2011
Volume 8, Issue 3, 2011
-
-
Safety of Vascular Endothelial and Hepatocyte Growth Factor Gene Therapy in Patients with Critical Limb Ischemia
More LessThe present clinical trial analyzed the safety of gene therapy using plasmidial constructs expressing vascular endothelial and hepatocyte growth factors in patients with critical limb ischemia. The study included 43 patients: 29 in the treatment group and 14 allocated to the placebo group. The primary end points were the rate of major amputations and the clinical safety of the method. Secondary end points were improvement of pain at rest, walking ability and the ankle/brachial pressure index. The overall major amputation rate was 31.04% in the treatment group and 71.42% in the placebo group (p=0.029). Pain at rest was improved in 65% of patients in the gene therapy group and in 7% in the placebo group (p=0.0006). There were no significant adverse effects in the treatment group. Conclusion: Gene therapy with vascular endothelial and hepatocyte growth factors is therapeutically safe and reduces the rate of major amputations and relieves pain at rest in patients with critical limb ischemia.
-
-
-
Neuroprotective Efficacy of the Peroxisome Proliferator-Activated Receptor-γ Ligand in Chronic Cerebral Hypoperfusion
More LessAuthors: Hale Sayan-Ozacmak, V. Haktan Ozacmak, Figen Barut and Ewa Jakubowska-DogruChronic cerebral hypoperfusion can cause learning and memory impairment and neuronal damage resembling the effects observed in vascular dementia. PPAR-γ agonists were shown to modulate inflammatory response and neuronal death following cerebral ischemia. The present study was designed to evaluate possible neuroprotective effects of rosiglitazone, a PPAR-γ agonist, in rat model of chronic cerebral hypoperfusion. Cerebral hypoperfusion was induced by permanent bilateral occlusion of the common carotid arteries. Oral administration of rosiglitazone (1.5, 3, and 6 mg/kg/day) or vehicle was carried out for 5 weeks, starting one week before the surgery. Cognitive performance was assessed using the Morris water maze. The density of S100B protein-immunoreactive astrocytes and the OX-42-labeled microglial activation were estimated. Synaptogenesis was also evaluated by the measurement of synaptophysin, the presynaptic vesicular protein, level via western blotting technique. Cerebral hypoperfusion for 30 days induced a significant cognitive impairment along with hyperactivation of both microglial and astroglial cells, and reduction of synaptophysin level. Rosiglitazone treatment (3 and 6 mg/kg) not only suppressed the activation of astrocytes and microglia markedly but also alleviated the impairment of memory and increased the synaptophysin level. In conclusion, our results suggest that the chronic administration of rosiglitazone significantly prevents chronic cerebral hypoperfusion-induced brain damage, at least, partly through suppressing glial activation and preserving synaptic plasticity. Thus, it appears that rosiglitazone may be a promising pharmacological agent in the development of therapeutic approaches for the prevention or treatment of cerebrovascular diseases.
-
-
-
Activation of Human Platelets by 2-Arachidonoylglycerol: Role of PKC in NO/cGMP Pathway Modulation
More LessWe demonstrated that the endocannabinoid 2-arachidonoylglycerol (2-AG) activated dose-dependently washed human platelets and increased intracellular calcium levels. Moreover 2-AG activated protein kinase C measured as p47pleckstrin phosphorylation. These parameters were prevented by the tromboxane A2 receptor antagonist SQ29548, by phospholipase C pathway (U73122) and protein kinase C (GF109203X) inhibitors. No effect on 2-AG-induced platelet activation and calcium elevation in the presence of inhibitors of fatty acid amide hydrolase or monoacylglycerol lipase was observed. In addition we have shown that 2-AG dose-dependently increased NO and cGMP levels. These effects were abolished by U73122, GF109203X, EGTA and the intracellular calcium chelator BAPTA/AM. Moreover, 2-AG enhanced eNOS activity through the phosphorylation of its positive regulatory residue ser1177 and by dephosphorylation of the negative one thr495. The eNOS ser1177 phosphorylation was inhibited by U73122 and GF109203X but it was unaffected by the PI3K/AKT pathway inhibitors LY294002 and MK2206. The dephosphorylation of thr495 was reversed by low concentrations of calyculin A. Taken together these data suggest that 2-AG behaves as a true platelet agonist stimulating PKC activation and calcium elevation. Likely 2-AG can modulate platelet activation by increasing NO levels through eNOS activation.
-
-
-
CD133+ Glioblastoma Stem-Like Cells Induce Vascular Mimicry in Vivo
More LessAuthors: Ming-Tsang Chiao, Yi-Chin Yang, Wen-Yu Cheng, Chiung-Chyi Shen and Jiunn-Liang KoGlioblastoma is one of the most angiogenic malignancies, the neoplastic vessels of which are likely to arise by angiogenesis and vasculogenesis. An alternative mechanism of tumor vasculature is described, termed vasculogenic mimicry, by which highly aggressive tumor cells can form vessel-like structures themselves, by virtue of their high cellular plasticity. Evidence suggests that cancer stem cells acquire a multi-potent plastic phenotype and show vasculogenic potential. In this study, we report that glioblastoma stem-like cells (GSCs) can form vasculogenic mimicry in tumor xenografts and express pro-vascular molecules. We isolated GSCs from resected human glioblastoma tissues and demonstrated their stemness, differentiation, and in vivo tumor-initiating potential. Through a limiting dilution assay, CD133+ (CD133+-GSC) and CD133- (CD133--GSC) subpopulation of GSCs were obtained. Orthotopic xenotransplantation study revealed that these two subpopulations of GSCs shared similar efficacy in tumor formation but showed distinct intratumor vasculature. In comparison with CD133--GSC, a highly vascularized anaplastic tumor, mimicking vasculogenic mimicry, was found in CD133+-GSC-derived tumor xenografts. Subsets of CD133+-GSC but not CD133-- GSC were capable of vascular smooth muscle-like cell differentiation, in vitro and in vivo. In tumor xenografts, endothelium-associated CD31 gene was detected in implanted CD133--GSC and exclusively dispersed within the tumor tissues. Although, the detailed action mechanisms required further investigation, this study demonstrated the vasculogenic capacity of brain GSCs and their cellular plasticity. The results of expression of pro-vascular molecules and differentiation of vascular-like cells suggest that GSCs may contribute to form vessel-like structures and provide a blood supply for glioblastoma cells.
-
-
-
Erythropoietin Employs Cell Longevity Pathways of SIRT1 to Foster Endothelial Vascular Integrity During Oxidant Stress
More LessAuthors: Jinling Hou, Shaohui Wang, Yan Chen Shang, Zhao Zhong Chong and Kenneth MaieseGiven the cytoprotective ability of erythropoietin (EPO) in cerebral microvascular endothelial cells (ECs) and the invaluable role of ECs in the central nervous system, it is imperative to elucidate the cellular pathways for EPO to protect ECs against brain injury. Here we illustrate that EPO relies upon the modulation of SIRT1 (silent mating type information regulator 2 homolog 1) in cerebral microvascular ECs to foster cytoprotection during oxygen-glucose deprivation (OGD). SIRT1 activation which results in the inhibition of apoptotic early membrane phosphatidylserine (PS) externalization and subsequent DNA degradation during OGD becomes a necessary component for EPO protection in ECs, since inhibition of SIRT1 activity or diminishing its expression by gene silencing abrogates cell survival supported by EPO during OGD. Furthermore, EPO promotes the subcellular trafficking of SIRT1 to the nucleus which is necessary for EPO to foster vascular protection. EPO through SIRT1 averts apoptosis through activation of protein kinase B (Akt1) and the phosphorylation and cytoplasmic retention of the forkhead transcription factor FoxO3a. SIRT1 through EPO activation also utilizes mitochondrial pathways to prevent mitochondrial depolarization, cytochrome c release, and Bad, caspase 1, and caspase 3 activation. Our work identifies novel pathways for EPO in the vascular system that can govern the activity of SIRT1 to prevent apoptotic injury through Akt1, FoxO3a phosphorylation and trafficking, mitochondrial membrane permeability, Bad activation, and caspase 1 and 3 activities in ECs during oxidant stress.
-
-
-
Ameliorative Effects of GW1929, a Nonthiazolidinedione PPARγ Agonist,on Inflammation and Apoptosis in Focal Cerebral Ischemic-Reperfusion Injury
More LessAuthors: Ravinder K. Kaundal and Shyam S. SharmaPresent study investigated the neuroprotective potential of a nonthiazolidinedione PPARγ agonist; 2- (Benzoylphenyl)-O-[2-(methyl-2-pyridinylamino) ethyl]-L-tyrosine (GW1929) in focal cerebral ischemic-reperfusion (IR) injury in rats. Focal cerebral IR injury resulted significant brain infarction and neurological deficits in rats. A significant increase in various inflammatory mediators like COX-2, iNOS, MMP-9, TNFα and IL-6 and massive apoptotic DNA fragmentation was also observed in the IR challenged brains. GW1929 treatment significantly attenuated the neurological damage in focal cerebral IR injury. Neuroprotective effects of GW1929 were found to be associated with significant reduction in the COX-2, iNOS, MMP-9, TNFα and IL-6 levels. Together, we have also evaluated the effects of Pioglitazone, a clinically available thiazolidinedione PPARγ agonist, against focal cerebral IR injury. Like GW1929, Pioglitazone also showed beneficial effects in cerebral IR injury associated neurological damage but at the higher dose as compared to GW1929. Neuroprotective effects of PPARγ agonists were found to be associated with significant reduction in TUNEL positive cells in IR challenged brain. In summary, these results suggested the neuroprotective potential of PPARγ agonists in cerebral IR injury and these effects may be attributed to their antiinflammatory and anti-apoptotic potential.
-
-
-
Dopamine and Vascular Dynamics Control: Present Status and Future Perspectives
More LessAuthors: Seyed Khosrow Tayebati, Mustafa F. Lokhandwala and Francesco AmentaThe catecholamine dopamine is a precursors in the biosynthesis of norepinephrine and epinephrine as well as a neurotransmitter in the central nervous system. Besides of its well known role of brain neurotransmitter, dopamine exerts specific functions at the periphery, being those at the level of the cardiovascular system and the kidney the most relevant. In fact it plays a role of modulator of blood pressure, sodium balance, and renal and adrenal functions through an independent peripheral dopaminergic system. In vivo administration or in vitro application of dopamine or of dopamine receptor agonists induce vasodilation in the cerebral, coronary, renal and mesenteric vascular beds and cause hypotension. Moreover, dopamine stimulates cardiac contractility and induces diuresis and natriuresis. Dopamine probably plays a role in the pathogenesis of arterial hypertension by regulating epithelial sodium transport, vascular smooth muscle contractility and production of reactive oxygen species and by interacting with the renin-angiotensin and sympathetic nervous systems. Dopamine exerts its actions via a class of cell surface receptors belonging to the rhodopsin-like family of G-protein coupled receptors. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3 and D4) subtypes based on their structure and pharmacology. Each of the dopamine receptor subtypes can participate in the regulation of blood pressure by specific mechanisms. Some receptors regulate blood pressure by influencing the central and/or autonomic nervous system; others influence epithelial transport and regulate the secretion and receptors of several humoral agents. This paper outlines the biochemistry, anatomical localization and physiology of the different dopamine receptors involved in the regulation of blood pressure, the relationship between dopamine receptor subtypes and hypertension and possibilities of modulating pharmacologically vascular dopamine receptor function.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month