Skip to content
2000
image of Propofol Attenuates LPS-induced Inflammation by Suppressing the Activation of Histone Lactylation in hCMEC/D3 Cells

Abstract

Introduction

Neuroinflammation is recognized as one of the pathogenic mechanisms underlying sepsis-associated encephalopathy (SAE). As the most commonly used anesthetic agent in the perioperative period, propofol has been demonstrated to exhibit neuroprotective and anti-inflammatory effects. This study aimed to investigate whether propofol could mitigate lipopolysaccharide (LPS)-mediated neuroinflammation and to explore the potential mechanisms.

Methods

hCMEC/D3 cells were treated with propofol, followed by LPS exposure. Western blot, ELISA, and RT-qPCR were used to assess the expression (both protein and mRNA levels) of potential pathway participants. Intracellular Fe2+ levels were determined using an Iron Assay Kit. In addition, an blood-brain barrier (BBB) model was constructed by co-culturing hCMEC/D3 cells and human astrocytes, and BBB permeability was assessed by measuring trans-endothelial electrical resistance (TEER).

Results

LPS (50 μg/mL, 1 h) significantly increased the secretion of TNF-α and IL-1β, induced intracellular Fe2+ accumulation, and upregulated the expression of 4-HNE, H3K18la, pan-Kla, and LDHA, while decreasing the expression of ZO-1, Claudin-5, and Occludin in hCMEC/D3 cells. More importantly, propofol (25 μM, 2 h) alleviated the aforementioned effects of LPS on hCMEC/D3 cells. Furthermore, we observed significant LPS-induced TEER reduction in the BBB model, and this effect was attenuated by propofol pretreatment.

Discussion

The protective effect of propofol on hCMEC/D3 cells' ferroptosis and LDHA-lactylation induced by LPS may be an important mechanism for neuroinflammation.

Conclusion

Propofol inhibits LPS-induced lactylation, ferroptosis, and release of inflammatory cytokines in hCMEC/D3 cells by downregulating the expression of LDHA.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026423091251211090557
2025-12-30
2026-01-26
Loading full text...

Full text loading...

References

  1. Serafim R. Gomes J.A. Salluh J. Póvoa P. A comparison of the quick-SOFA and Systemic inflammatory response syndrome criteria for the diagnosis of sepsis and prediction of mortality. Chest 2018 153 3 646 655 10.1016/j.chest.2017.12.015 29289687
    [Google Scholar]
  2. Meyer N.J. Prescott H.C. Sepsis and Septic Shock. N. Engl. J. Med. 2024 391 22 2133 2146 10.1056/NEJMra2403213 39774315
    [Google Scholar]
  3. Szatmári S. Végh T. Csomós Á. Impaired cerebrovascular reactivity in sepsis-associated encephalopathy studied by acetazolamide test. Crit. Care 2010 14 2 R50 10.1186/cc8939 20356365
    [Google Scholar]
  4. Hu J. Xie S. Li W. Zhang L. Diagnostic and prognostic value of serum S100B in sepsis-associated encephalopathy: A systematic review and meta-analysis. Front. Immunol. 2023 14 1102126 10.3389/fimmu.2023.1102126 36776893
    [Google Scholar]
  5. Emonts M. Sweep F.C.G.J. Grebenchtchikov N. Association between high levels of blood macrophage migration inhibitory factor, inappropriate adrenal response, and early death in patients with severe sepsis. Clin. Infect. Dis. 2007 44 10 1321 1328 10.1086/514344 17443469
    [Google Scholar]
  6. Sonneville R. Benghanem S. Jeantin L. The spectrum of sepsis-associated encephalopathy: A clinical perspective. Crit. Care 2023 27 1 386 10.1186/s13054‑023‑04655‑8 37798769
    [Google Scholar]
  7. Yu S. Liao J. Lin X. Luo Y. Lu G. Crucial role of autophagy in propofol-treated neurological diseases: A comprehensive review. Front. Cell. Neurosci. 2023 17 1274727 10.3389/fncel.2023.1274727 37946715
    [Google Scholar]
  8. Dominguini D. Steckert A.V. Michels M. The effects of anaesthetics and sedatives on brain inflammation. Neurosci. Biobehav. Rev. 2021 127 504 513 10.1016/j.neubiorev.2021.05.009 33992694
    [Google Scholar]
  9. Heybati K. Zhou F. Ali S. Outcomes of dexmedetomidine versus propofol sedation in critically ill adults requiring mechanical ventilation: A systematic review and meta-analysis of randomised controlled trials. Br. J. Anaesth. 2022 129 4 515 526 10.1016/j.bja.2022.06.020 35961815
    [Google Scholar]
  10. Zhang Y. Ding X. Miao C. Chen J. Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway in hCMEC/D3 cells. BMC Anesthesiol. 2019 19 1 127 10.1186/s12871‑019‑0788‑5 31288745
    [Google Scholar]
  11. Kadry H. Noorani B. Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020 17 1 69 10.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  12. Cooper J. Pastorello Y. Slevin M. A meta-analysis investigating the relationship between inflammation in autoimmune disease, elevated CRP, and the risk of dementia. Front. Immunol. 2023 14 1087571 10.3389/fimmu.2023.1087571 36776896
    [Google Scholar]
  13. Kuperberg S.J. Wadgaonkar R. Sepsis-associated encephalopathy: The blood–brain barrier and the sphingolipid rheostat. Front. Immunol. 2017 8 597 10.3389/fimmu.2017.00597 28670310
    [Google Scholar]
  14. Pierrakos C. Velissaris D. Bisdorff M. Marshall J.C. Vincent J.L. Biomarkers of sepsis: time for a reappraisal. Crit. Care 2020 24 1 287 10.1186/s13054‑020‑02993‑5 32503670
    [Google Scholar]
  15. Zhang T. Chen L. Kueth G. Lactate’s impact on immune cells in sepsis: Unraveling the complex interplay. Front. Immunol. 2024 15 1483400 10.3389/fimmu.2024.1483400 39372401
    [Google Scholar]
  16. Chu X. Di C. Chang P. Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front. Immunol. 2022 12 786666 10.3389/fimmu.2021.786666 35069560
    [Google Scholar]
  17. Yang K. Fan M. Wang X. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022 29 1 133 146 10.1038/s41418‑021‑00841‑9 34363018
    [Google Scholar]
  18. Liu Q. Wu J. Zhang X. Wu X. Zhao Y. Ren J. Iron homeostasis and disorders revisited in the sepsis. Free Radic. Biol. Med. 2021 165 1 13 10.1016/j.freeradbiomed.2021.01.025 33486088
    [Google Scholar]
  19. Christopher B.N. Golick L. Basar A. Modulating the CXCR2 signaling axis using engineered chemokine fusion proteins to disrupt myeloid cell infiltration in pancreatic cancer. Biomolecules 2025 15 5 645 10.3390/biom15050645
    [Google Scholar]
  20. Ding X. Sun X. Shen X. Propofol attenuates TNF-α-induced MMP-9 expression in human cerebral microvascular endothelial cells by inhibiting Ca2+/CAMK II/ERK/NF-κB signaling pathway. Acta Pharmacol. Sin. 2019 40 10 1303 1313 10.1038/s41401‑019‑0258‑0 31235816
    [Google Scholar]
  21. Song L. Chen X. Wang P. Gao S. Qu C. Liu L. Effects of baicalein on pancreatic cancer stem cells via modulation of sonic Hedgehog pathway. Acta Biochim. Biophys. Sin. (Shanghai) 2018 50 6 586 596 10.1093/abbs/gmy045 29697746
    [Google Scholar]
  22. Skrzypczak-Wiercioch A. Sałat K. Lipopolysaccharide-induced model of neuroinflammation: Mechanisms of action, research application and future directions for Its Use. Molecules 2022 27 17 5481 10.3390/molecules27175481 36080253
    [Google Scholar]
  23. Liu J. Ai P. Sun Y. Propofol Inhibits Microglial Activation via miR-106b/Pi3k/Akt Axis. Front. Cell. Neurosci. 2021 15 768364 10.3389/fncel.2021.768364 34776870
    [Google Scholar]
  24. Liu H. Yang C. Wang X. Propofol improves sleep deprivation‐induced sleep structural and cognitive deficits via upregulating the BMAL1 expression and suppressing microglial M1 polarization. CNS Neurosci. Ther. 2024 30 7 e14798 10.1111/cns.14798 39015099
    [Google Scholar]
  25. Sun M. Li Y. Liu M. Insulin alleviates lipopolysaccharide-induced cognitive impairment via inhibiting neuroinflammation and ferroptosis. Eur. J. Pharmacol. 2023 955 175929 10.1016/j.ejphar.2023.175929 37479016
    [Google Scholar]
  26. Su R. Pan X. Chen Q. Nicotinamide mononucleotide mitigates neuroinflammation by enhancing GPX4-mediated ferroptosis defense in microglia. Brain Res. 2024 1845 149197 10.1016/j.brainres.2024.149197 39216693
    [Google Scholar]
  27. Meng J. Fang J. Bao Y. The biphasic role of Hspb1 on ferroptotic cell death in Parkinson’s disease. Theranostics 2024 14 12 4643 4666 10.7150/thno.98457 39239519
    [Google Scholar]
  28. Wang Q. Qi B. Shi S. Melatonin Alleviates Osteoarthritis by Regulating NADPH Oxidase 4–Induced Ferroptosis and Mitigating Mitochondrial Dysfunction. J. Pineal Res. 2024 76 6 e12992 10.1111/jpi.12992 39228264
    [Google Scholar]
  29. Han H. Zhao Y. Du J. Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia. Immun. Ageing 2023 20 1 63 10.1186/s12979‑023‑00390‑4 37978517
    [Google Scholar]
  30. Jiang X. Gao J. Fei X. Global profiling of protein lactylation in microglia in experimental high-altitude cerebral edema. Cell Commun. Signal. 2024 22 1 374 10.1186/s12964‑024‑01748‑x 39054523
    [Google Scholar]
  31. Chen J. Zhang M. Liu Y. Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension. J. Mol. Cell Biol. 2023 14 12 mjac073 10.1093/jmcb/mjac073 36564027
    [Google Scholar]
  32. Nishima N. Tanaka S. Lactate: A missing link between metabolism and inflammation in CKD progression? Kidney Int. 2024 106 2 183 185 10.1016/j.kint.2024.05.016 39032962
    [Google Scholar]
  33. Kim H. Leng K. Park J. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat. Commun. 2022 13 1 6581 10.1038/s41467‑022‑34412‑4 36323693
    [Google Scholar]
  34. Gan N. Zhou Y. Li J. Wang A. Cao Y. Propofol Suppresses LPS-induced BBB Damage by Regulating miR-130a-5p/ZO-1 Axis. Mol. Biotechnol. 2024 66 8 2007 2015 10.1007/s12033‑023‑00835‑7 37556107
    [Google Scholar]
  35. Galea I. The blood–brain barrier in systemic infection and inflammation. Cell. Mol. Immunol. 2021 18 11 2489 2501 10.1038/s41423‑021‑00757‑x 34594000
    [Google Scholar]
  36. Benz F. Liebner S. Structure and Function of the Blood–Brain Barrier (BBB). Handb. Exp. Pharmacol. 2020 273 3 31 10.1007/164_2020_404 33249527
    [Google Scholar]
  37. Franzén S. Semenas E. Larsson A. Hultström M. Frithiof R. Plasma cytokine levels in spinal surgery with sevoflurane or total intravenous propofol anesthesia – A post hoc analysis of a randomized controlled trial. Cytokine 2023 169 156290 10.1016/j.cyto.2023.156290 37399604
    [Google Scholar]
  38. Zhang L. Wu C. Liu T. Propofol Protects the Blood-Brain Barrier After Traumatic Brain Injury by Stabilizing the Extracellular Matrix via Prrx1: From Neuroglioma to Neurotrauma. Neurochem. Res. 2024 49 10 2743 2762 10.1007/s11064‑024‑04202‑z 38951281
    [Google Scholar]
  39. Chen X. Kang R. Kroemer G. Tang D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med. 2021 218 6 e20210518 10.1084/jem.20210518 33978684
    [Google Scholar]
  40. Huang Q. Ding Y. Fang C. Wang H. Kong L. The emerging role of ferroptosis in sepsis, opportunity or challenge? Infect. Drug Resist. 2023 16 5551 5562 10.2147/IDR.S419993 37641800
    [Google Scholar]
  41. Lu Y. Chen W. Lin C. The protective effects of propofol against CoCl2-induced HT22 cell hypoxia injury via PP2A/] CAMKIIα/nNOS pathway. BMC Anesthesiol. 2017 17 1 32 10.1186/s12871‑017‑0327‑1 28241801
    [Google Scholar]
  42. Xu Z. Lu Y. Wang J. Ding X. Chen J. Miao C. The protective effect of propofol against TNF-α-induced apoptosis was mediated via inhibiting iNOS/NO production and maintaining intracellular Ca2+ homeostasis in mouse hippocampal HT22 cells. Biomed. Pharmacother. 2017 91 664 672 10.1016/j.biopha.2017.04.110 28499237
    [Google Scholar]
  43. Tao W. Zhang X. Ding J. The effect of propofol on hypoxia‐ and TNF‐α‐mediated BDNF/TrkB pathway dysregulation in primary rat hippocampal neurons. CNS Neurosci. Ther. 2022 28 5 761 774 10.1111/cns.13809 35112804
    [Google Scholar]
  44. Zhou B.W. Zhang W.J. Zhang F.L. Propofol improves survival in a murine model of sepsis via inhibiting Rab5a-mediated intracellular trafficking of TLR4. J. Transl. Med. 2024 22 1 316 10.1186/s12967‑024‑05107‑9 38549133
    [Google Scholar]
  45. Wu D. Spencer C.B. Ortoga L. Zhang H. Miao C. Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol. 2024 74 103194 10.1016/j.redox.2024.103194 38852200
    [Google Scholar]
  46. Jing F. Zhang J. Zhang H. Li T. Unlocking the multifaceted molecular functions and diverse disease implications of lactylation. Biol. Rev. Camb. Philos. Soc. 2025 100 1 172 189 10.1111/brv.13135 39279350
    [Google Scholar]
  47. Li X. Yang Y. Zhang B. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022 7 1 305 10.1038/s41392‑022‑01151‑3 36050306
    [Google Scholar]
  48. Fang Y. Li Z. Yang L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun. Signal. 2024 22 1 276 10.1186/s12964‑024‑01624‑8 38755659
    [Google Scholar]
  49. Candelario-Jalil E. Dijkhuizen R.M. Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 2022 53 5 1473 1486 10.1161/STROKEAHA.122.036946 35387495
    [Google Scholar]
  50. Taylor J. Parker M. Casey C.P. Postoperative delirium and changes in the blood–brain barrier, neuroinflammation, and cerebrospinal fluid lactate: a prospective cohort study. Br. J. Anaesth. 2022 129 2 219 230 10.1016/j.bja.2022.01.005 35144802
    [Google Scholar]
  51. Zheng H. Xiao X. Han Y. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol. Rep. 2024 76 5 962 980 10.1007/s43440‑024‑00620‑6 38954373
    [Google Scholar]
  52. Wu Q. Zhao Y. Chen X. Propofol attenuates BV2 microglia inflammation via NMDA receptor inhibition. Can. J. Physiol. Pharmacol. 2018 96 3 241 248 10.1139/cjpp‑2017‑0243 28817786
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026423091251211090557
Loading
/content/journals/cnr/10.2174/0115672026423091251211090557
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Lipopolysaccharide ; lactylation ; Propofol ; inflammation ; hCMEC/D3 cells ; ferroptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test