Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Introduction

Headaches affect up to 95% of individuals during their lifetime and are a major global cause of disability. Intracranial Aneurysm (IA) is a cerebrovascular disorder affecting approximately 3.2% of the general population. Observational studies have suggested an association between headaches and IA, but the causal relationship remains unclear. This Mendelian Randomization (MR) analysis aims to elucidate the causal relationship between headaches and IA.

Methods

A two-sample bidirectional Mendelian Randomization (MR) analysis was performed using publicly available Genome-Wide Association Study (GWAS) data to assess the causal relationships between IA and four headache subtypes, namely, Chronic Headache (CH), Tension-Type Headache (TTH), Migraine Without Aura (MO), and Migraine With Aura (MA). The inverse variance weighted method was employed as the primary method, with sensitivity analyses conducted to evaluate the robustness of the results. Mediation analysis was performed to investigate the potential mediating role of hypertension.

Results

The MR analysis revealed that MO was associated with an increased risk of aneurysmal Subarachnoid Hemorrhage (aSAH) (Odds Ratio [OR] = 1.422, 95% Confidence Interval [CI]: 1.054–1.918, and = 0.021), while MA (OR = 1.527, 95% CI: 1.115–2.091, and = 0.008) was associated with an elevated risk of unruptured IA (uIA). Mediation analysis indicated that hypertension did not significantly mediate these associations.

Discussion

This study highlights the potential role of MO in aSAH and MA in uIA, where hypertension does not serve as a significant mediator. Further research is necessary to investigate the underlying mechanisms, which may offer valuable insights into the prevention and management of IA.

Conclusion

Bidirectional MR analysis of four headache subtypes and IA provides evidence that MO is associated with an increased risk of aSAH, while MA is linked to a higher risk of uIA. These findings contribute to a better understanding of the complex relationship between headaches and IA.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026380807250530112524
2025-06-04
2025-09-10
Loading full text...

Full text loading...

References

  1. XuZ. RuiY.N. HaganJ.P. KimD.H. Intracranial aneurysms: Pathology, genetics, and molecular mechanisms.Neuromolecular Med.201921432534310.1007/s12017‑019‑08537‑7 31055715
    [Google Scholar]
  2. MacdonaldR.L. SchweizerT.A. Spontaneous subarachnoid haemorrhage.Lancet20173891006965566610.1016/S0140‑6736(16)30668‑7 27637674
    [Google Scholar]
  3. VlakM.H.M. AlgraA. BrandenburgR. RinkelG.J.E. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis.Lancet Neurol.201110762663610.1016/S1474‑4422(11)70109‑0 21641282
    [Google Scholar]
  4. RinkelG.J.E. AlgraA. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage.Lancet Neurol.201110434935610.1016/S1474‑4422(11)70017‑5 21435599
    [Google Scholar]
  5. BrinjikjiW. ZhuY.Q. LanzinoG. Risk factors for growth of intracranial aneurysms: A systematic review and meta-analysis.AJNR Am. J. Neuroradiol.201637461562010.3174/ajnr.A4575 26611992
    [Google Scholar]
  6. JinD. SongC. LengX. HanP. A systematic review and meta-analysis of risk factors for unruptured intracranial aneurysm growth.Int. J. Surg.201969687610.1016/j.ijsu.2019.07.023 31356963
    [Google Scholar]
  7. Salimi AshkezariS.F. MutF. ChungB.J. Hemodynamics in aneurysm blebs with different wall characteristics.J. Neurointerv. Surg.202113764264610.1136/neurintsurg‑2020‑016601 33020208
    [Google Scholar]
  8. WangJ. WeiL. LuH. ZhuY. Roles of inflammation in the natural history of intracranial saccular aneurysms.J. Neurol. Sci.202142411729410.1016/j.jns.2020.117294 33799211
    [Google Scholar]
  9. Al FauziA. RahmatullahM.I. SurotoN.S. Comparison of outcomes between clipping and endovascular coiling in anterior choroidal artery aneurysm: A systematic review.Neurosurg. Rev.202346127610.1007/s10143‑023‑02179‑x 37861756
    [Google Scholar]
  10. JavadniaP. BahadoriA.R. NaghaviE. Comparative efficacy and safety of therapeutic strategies for mirror aneurysms: A systematic review and meta-analysis.Neurosurg. Rev.202447190010.1007/s10143‑024‑03138‑w 39666217
    [Google Scholar]
  11. NaggaraO.N. WhiteP.M. GuilbertF. RoyD. WeillA. RaymondJ. Endovascular treatment of intracranial unruptured aneurysms: Systematic review and meta-analysis of the literature on safety and efficacy.Radiology2010256388789710.1148/radiol.10091982 20634431
    [Google Scholar]
  12. SauvignyJ. DrexlerR. PantelT.F. Microsurgical clipping of unruptured anterior circulation aneurysms—a global multicenter investigation of perioperative outcomes.Neurosurgery20249461218122610.1227/neu.0000000000002829 38240568
    [Google Scholar]
  13. ThompsonB.G. BrownR.D. Amin-HanjaniS. Guidelines for the management of patients with unruptured intracranial aneurysms.Stroke20154682368240010.1161/STR.0000000000000070 26089327
    [Google Scholar]
  14. StovnerL.J. NicholsE. SteinerT.J. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: A systematic analysis for the global burden of disease study 2016.Lancet Neurol.2018171195497610.1016/S1474‑4422(18)30322‑3 30353868
    [Google Scholar]
  15. YangY. CaoY. Rising trends in the burden of migraine and tension-type headache among adolescents and young adults globally, 1990 to 2019.J. Headache Pain20232419410.1186/s10194‑023‑01634‑w 37495946
    [Google Scholar]
  16. The international classification of headache disorders, 3rd edition. Cephalalgia2018381121110.1177/0333102417738202
    [Google Scholar]
  17. VlakM.H.M. RinkelG.J.E. GreebeP. AlgraA. Risk of rupture of an intracranial aneurysm based on patient characteristics: A case-control study.Stroke20134451256125910.1161/STROKEAHA.111.000679 23520239
    [Google Scholar]
  18. LamsamL. BhambhvaniH.P. ThomasA. RatliffJ.K. MooreJ.M. Aneurysmal subarachnoid hemorrhage in patients with migraine and tension headache: A cohort comparison study.J. Clin. Neurosci.202079909410.1016/j.jocn.2020.07.017 33070926
    [Google Scholar]
  19. LebedevaE.R. GuraryN.M. SakovichV.P. OlesenJ. Migraine before rupture of intracranial aneurysms.J. Headache Pain20131411510.1186/1129‑2377‑14‑15 23574797
    [Google Scholar]
  20. WanZ. MengH. XuN. Clinical characteristics associated with sentinel headache in patients with unruptured intracranial aneurysms.Interv. Neuroradiol.202127449750210.1177/1591019920971977 33148104
    [Google Scholar]
  21. LebedevaE.R. BusyginaA.V. KolotvinovV.S. SakovichV.P. OlesenJ. Remission of migraine after clipping of saccular intracranial aneurysms.Acta Neurol. Scand.2015131212012610.1111/ane.12292 25288229
    [Google Scholar]
  22. SwerdlowD.I. KuchenbaeckerK.B. ShahS. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies.Int. J. Epidemiol.20164551600161610.1093/ije/dyw088 27342221
    [Google Scholar]
  23. RichmondR.C. Davey SmithG. Mendelian randomization: Concepts and scope.Cold Spring Harb. Perspect. Med.2022121a04050110.1101/cshperspect.a040501 34426474
    [Google Scholar]
  24. PingaultJ.B. O’ReillyP.F. SchoelerT. PloubidisG.B. RijsdijkF. DudbridgeF. Using genetic data to strengthen causal inference in observational research.Nat. Rev. Genet.201819956658010.1038/s41576‑018‑0020‑3 29872216
    [Google Scholar]
  25. MaJ. ZongK. WangY. Exploring the impact of dietary factors on intracranial aneurysm risk: insights from Mendelian randomization analysis.Neurol. Res.2025121910.1080/01616412.2025.2477240 40071388
    [Google Scholar]
  26. TanJ. ZhuH. ZengY. LiJ. ZhaoY. LiM. Modifiable lifestyle factors and risk of intracranial aneurysm: A univariate and multivariate Mendelian randomisation study.Neuroscience202556691610.1016/j.neuroscience.2024.12.034 39706516
    [Google Scholar]
  27. LiuJ. YuanB. WangY. YanJ. Bi-directional effects between inflammatory molecules and intracranial aneurysm.Neurosurg. Rev.202447186510.1007/s10143‑024‑03070‑z 39570436
    [Google Scholar]
  28. KowalskaM. PrendeckiM. PiekutT. KozubskiW. DorszewskaJ. Migraine: Calcium channels and glia.Int. J. Mol. Sci.2021225268810.3390/ijms22052688 33799975
    [Google Scholar]
  29. Gonzalez-MartinezA. RayJ.C. HaghdoostF. Time and headache: Insights into timing processes in primary headache disorders for diagnosis, underlying pathophysiology and treatment implications.Cephalalgia202444110333102424129765210.1177/03331024241297652 39558611
    [Google Scholar]
  30. ParsaeiM. TaebiM. ArvinA. MoghaddamH.S. Brain structural and functional abnormalities in patients with tension‐type headache: A systematic review of magnetic resonance imaging studies.J. Neurosci. Res.20241021e2529410.1002/jnr.25294 38284839
    [Google Scholar]
  31. PaolucciM. AltamuraC. VernieriF. The role of endothelial dysfunction in the pathophysiology and cerebrovascular effects of migraine: A narrative review.J. Clin. Neurol.202117216417510.3988/jcn.2021.17.2.>164 33835736
    [Google Scholar]
  32. SkrivankovaV.W. RichmondR.C. WoolfB.A.R. Strengthening the reporting of observational studies in epidemiology using mendelian randomization.JAMA2021326161614162110.1001/jama.2021.18236 34698778
    [Google Scholar]
  33. Zorina-LichtenwalterK. BangoC.I. Van OudenhoveL. Genetic risk shared across 24 chronic pain conditions: Identification and characterization with genomic structural equation modeling.Pain2023164102239225210.1097/j.pain.0000000000002922 37219871
    [Google Scholar]
  34. JiangL. ZhengZ. FangH. YangJ. A generalized linear mixed model association tool for biobank-scale data.Nat. Genet.202153111616162110.1038/s41588‑021‑00954‑4 34737426
    [Google Scholar]
  35. KurkiM.I. KarjalainenJ. PaltaP. FinnGen provides genetic insights from a well-phenotyped isolated population.Nature2023613794450851810.1038/s41586‑022‑05473‑8 36653562
    [Google Scholar]
  36. BakkerM.K. van der SpekR.A.A. van RheenenW. Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors.Nat. Genet.202052121303131310.1038/s41588‑020‑00725‑7 33199917
    [Google Scholar]
  37. LoyaH. KalantzisG. CooperF. PalamaraP.F. A scalable variational inference approach for increased mixed-model association power.Nat. Genet.202557246146810.1038/s41588‑024‑02044‑7 39789286
    [Google Scholar]
  38. MachielaM.J. ChanockS.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants.Bioinformatics201531213555355710.1093/bioinformatics/btv402 26139635
    [Google Scholar]
  39. LinS.H. BrownD.W. MachielaM.J. LDtrait: An online tool for identifying published phenotype associations in linkage disequilibrium.Cancer Res.202080163443344610.1158/0008‑5472.CAN‑20‑0985 32606005
    [Google Scholar]
  40. BurgessS. DudbridgeF. ThompsonS.G. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods.Stat. Med.201635111880190610.1002/sim.6835 26661904
    [Google Scholar]
  41. BowdenJ. Davey SmithG. HaycockP.C. BurgessS. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator.Genet. Epidemiol.201640430431410.1002/gepi.21965 27061298
    [Google Scholar]
  42. KangH. ZhangA. CaiT.T. SmallD.S. Instrumental variables estimation with some invalid instruments and its application to mendelian randomization.J. Am. Stat. Assoc.201611151313214410.1080/01621459.2014.994705
    [Google Scholar]
  43. VerbanckM. ChenC.Y. NealeB. DoR. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases.Nat. Genet.201850569369810.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  44. BowdenJ. Davey SmithG. BurgessS. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression.Int. J. Epidemiol.201544251252510.1093/ije/dyv080 26050253
    [Google Scholar]
  45. BowdenJ. Del GrecoM.F. MinelliC. Improving the accuracy of two-sample summary-data Mendelian randomization: Moving beyond the NOME assumption.Int. J. Epidemiol.201948372874210.1093/ije/dyy>258 30561657
    [Google Scholar]
  46. Velickovic OstojicL. LiangJ.W. SheikhH.U. DhamoonM.S. Impact of aura and status migrainosus on readmissions for vascular events after migraine admission.Headache201858796497210.1111/head.13347 29933509
    [Google Scholar]
  47. SchwedtT.J. GereauR.W. FreyK. KharaschE.D. Headache outcomes following treatment of unruptured intracranial aneurysms: A prospective analysis.Cephalalgia201131101082108910.1177/0333102411398155 21398420
    [Google Scholar]
  48. GuD.Q. DuanC.Z. LiX.F. HeX.Y. LaiL.F. SuS.X. Effect of endovascular treatment on headache in elderly patients with unruptured intracranial aneurysms.AJNR Am. J. Neuroradiol.20133461227123110.3174/ajnr.A3353 23221953
    [Google Scholar]
  49. ZhangL. WangY. ZhangQ. Headache improvement after intracranial endovascular procedures in Chinese patients with unruptured intracranial aneurysm.Medicine2017966e608410.1097/MD.0000000000006084 28178166
    [Google Scholar]
  50. GanQ. SongE. ZhangL. The role of hypertension in the relationship between leisure screen time, physical activity and migraine: A 2-sample Mendelian randomization study.J. Headache Pain202425112210.1186/s10194‑024‑01820‑4 39048956
    [Google Scholar]
  51. MazzacaneF. VaghiG. Cotta RamusinoM. PeriniG. CostaA. Arterial hypertension in the chronic evolution of migraine: Bystander or risk factor? An overview.J. Headache Pain20242511310.1186/s10194‑024‑01720‑7 38311745
    [Google Scholar]
  52. BackesD. RinkelG.J.E. LabanK.G. AlgraA. VergouwenM.D.I. Patient- and aneurysm-specific risk factors for intracranial aneurysm growth.Stroke201647495195710.1161/STROKEAHA.115.012162 26906920
    [Google Scholar]
  53. KangH. PengT. QianZ. Impact of hypertension and smoking on the rupture of intracranial aneurysms and their joint effect.Neurol. Neurochir. Pol.201549212112510.1016/j.pjnns.2015.03.005 25890927
    [Google Scholar]
  54. EntonenA.H. SuominenS.B. SillanmäkiL.H. Prevalent migraine as a predictor of incident hypertension.Eur. J. Public Health202232229730110.1093/eurpub/ckab>219 35021188
    [Google Scholar]
  55. EntonenA.H. SuominenS.B. KorkeilaK. Migraine predicts hypertension--a cohort study of the Finnish working-age population.Eur. J. Public Health201424224424810.1093/eurpub/ckt141 24065369
    [Google Scholar]
  56. RistP.M. WinterA.C. BuringJ.E. SessoH.D. KurthT. Migraine and the risk of incident hypertension among women.Cephalalgia201838121817182410.1177/0333102418756865 29388437
    [Google Scholar]
  57. KareffH. SharpeS. GuptaC. FriedmanB.W. Treatment of headache reduces blood pressure among most patients with migraine and elevated blood pressure.Am. J. Emerg. Med.202591555810.1016/j.ajem.2025.02.017 39987628
    [Google Scholar]
  58. SumelahtiM.L. SumanenM.S. MattilaK.J. SillanmäkiL. SumanenM. Stroke and cardiovascular risk factors among working-aged Finnish migraineurs.BMC Public Health2021211108810.1186/s12889‑021‑11006‑1 34098909
    [Google Scholar]
  59. GudmundssonL.S. ThorgeirssonG. SigfussonN. SigvaldasonH. JohannssonM. Migraine patients have lower systolic but higher diastolic blood pressure compared with controls in a population-based study of 21,537 subjects. The reykjavik study.Cephalalgia200626443644410.1111/j.1468‑2982.2005.01057.x 16556245
    [Google Scholar]
  60. BenseñorI.M. GoulartA.C. LotufoP.A. MenezesP.R. ScazufcaM. Cardiovascular risk factors associated with migraine among the elderly with a low income: The São Paulo ageing & health study (SPAH).Cephalalgia201131333133710.1177/0333102410380754 20693229
    [Google Scholar]
  61. CloseL.N. EftekhariS. WangM. CharlesA.C. RussoA.F. Cortical spreading depression as a site of origin for migraine: Role of CGRP.Cephalalgia201939342843410.1177/0333102418774299 29695168
    [Google Scholar]
  62. DehghaniA. SchenkeM. van HeiningenS.H. KaratasH. TolnerE.A. van den MaagdenbergA.M.J.M. Optogenetic cortical spreading depolarization induces headache-related behaviour and neuroinflammatory responses some prolonged in familial hemiplegic migraine type 1 mice.J. Headache Pain20232419610.1186/s10194‑023‑01628‑8 37495957
    [Google Scholar]
  63. ShibataM. SuzukiN. Exploring the role of microglia in cortical spreading depression in neurological disease.J. Cereb. Blood Flow Metab.20173741182119110.1177/0271678X17690537 28155572
    [Google Scholar]
  64. BolayH. ReuterU. DunnA.K. HuangZ. BoasD.A. MoskowitzM.A. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model.Nat. Med.20028213614210.1038/nm0202‑136 11821897
    [Google Scholar]
  65. GrecoR. De IccoR. DemartiniC. Plasma levels of CGRP and expression of specific microRNAs in blood cells of episodic and chronic migraine subjects: Towards the identification of a panel of peripheral biomarkers of migraine?J. Headache Pain202021112210.1186/s10194‑020‑01189‑0 33066724
    [Google Scholar]
  66. SchefflerA. BastenJ. MenzelL. Persistent effectiveness of CGRP antibody therapy in migraine and comorbid medication overuse or medication overuse headache - A retrospective real-world analysis.J. Headache Pain202425110910.1186/s10194‑024‑01813‑3 38965463
    [Google Scholar]
  67. Nelson-ManeyN.P. BálintL. BeesonA.L.S. Meningeal lymphatic CGRP signaling governs pain via cerebrospinal fluid efflux and neuroinflammation in migraine models.J. Clin. Invest.202413415e17561610.1172/JCI175616 38743922
    [Google Scholar]
  68. IyengarS. JohnsonK.W. OssipovM.H. AuroraS.K. CGRP and the trigeminal system in migraine.Headache201959565968110.1111/head.13529 30982963
    [Google Scholar]
  69. TorunI.E. KilincY.B. KilincE. TöreF. TRESK channel activation ameliorates migraine-like pain via modulation of CGRP release from the trigeminovascular system and meningeal mast cells in experimental migraine models.Life Sci.202435712309110.1016/j.lfs.2024.123091 39362587
    [Google Scholar]
  70. EdvinssonL. WarfvingeK. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment.Cephalalgia201939336637310.1177/0333102417736900 29020807
    [Google Scholar]
  71. WangT ZhuC zhang K, et al. Targeting IGF1/IGF1r signaling relieve pain and autophagic dysfunction in NTG-induced chronic migraine model of mice.J. Headache Pain202425115610.1186/s10194‑024‑01864‑6 39304806
    [Google Scholar]
  72. IshibashiR. ItaniM. KawashimaA. ArakawaY. AokiT. JNK2-MMP-9 axis facilitates the progression of intracranial aneurysms.Sci. Rep.20241411945810.1038/s41598‑024‑70493‑5 39169203
    [Google Scholar]
  73. KhanD. CorneliusJ.F. MuhammadS. The role of NF-κB in intracranial aneurysm pathogenesis: A systematic review.Int. J. Mol. Sci.202324181421810.3390/ijms241814218 37762520
    [Google Scholar]
  74. FanH. TianH. JinF. CypD induced ROS output promotes intracranial aneurysm formation and rupture by 8-OHdG/] NLRP3/MMP9 pathway.Redox Biol.20236710288710.1016/j.redox.2023.102887 37717465
    [Google Scholar]
  75. LøvikK. Laupsa-BorgeJ. LogalloN. HellandC.A. Body composition and rupture risk of intracranial aneurysms.Eur. J. Med. Res.202429129710.1186/s40001‑024‑01888‑3 38790007
    [Google Scholar]
  76. EtminanN. de SousaD.A. TiseoC. European stroke organisation (ESO) guidelines on management of unruptured intracranial aneurysms.Eur. Stroke J.202273V10.1177/23969873221099736 36082246
    [Google Scholar]
  77. ZuurbierC.C.M. MolenbergR. MensingL.A. Sex difference and rupture rate of intracranial aneurysms: An individual patient data meta-analysis.Stroke202253236236910.1161/STROKEAHA.121.035187 34983236
    [Google Scholar]
  78. DzatorJ.S.A. HoweP.R.C. WongR.H.X. Profiling cerebrovascular function in migraine: A systematic review and meta-analysis.J. Cereb. Blood Flow Metab.202141591994410.1177/0271678X20964344 33086920
    [Google Scholar]
  79. ChuH.T. LiangC.S. LeeJ.T. Associations between depression/anxiety and headache frequency in migraineurs: A cross‐sectional study.Headache201858340741510.1111/head.13215 29044546
    [Google Scholar]
  80. Tfelt-HansenP.C. Evidence-based guideline update: Pharmacologic treatment for episodic migraine prevention in adults: Report of the quality standards subcommittee of the american academy of neurology and the american headache society.Neurology201380986987010.1212/01.wnl.0000427909.23467.39 23439705
    [Google Scholar]
  81. AshinaM. Migraine.N. Engl. J. Med.2020383191866187610.1056/NEJMra1915327 33211930
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026380807250530112524
Loading
/content/journals/cnr/10.2174/0115672026380807250530112524
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test