Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background and Purpose

Mechanical Thrombectomy (MT) is the recommended treatment for patients with an acute ischemic stroke (AIS) due to large vessel occlusion (LVO) within 6 h after onset. However, the poor prognosis for patients with an acute great vascular occlusive stroke after an MT, which is a common occurrence, can be attributed to an absence of appropriate postoperative monitoring. Transcranial Doppler (TCD) ultrasound and Quantitative Electroencephalography (QEEG) offer the advantages of rapid, convenient, and bedside examinations compared to conventional imaging techniques.

Objective

In the current study, we analyzed the predictive performance of clinical factors, TCD ultrasound, and QEEG for the prognosis of patients with an AIS due to LVO 90 days after hospital discharge.

Methods

Patients who achieved revascularization following an MT that was performed within 6 h after the onset of AIS due to LVO were included. We used the data to build four predictive models of prognosis and compared the predictive performance measured by the area under the curve, sensitivity, and specificity.

Results

Seventy-four patients were included in the study, among whom 47 had a poor prognosis (63.5%) at the time of hospital discharge, and 45 had a poor prognosis (60.8%) 90 d after hospital discharge. Independent predictors of poor prognosis 90 d after hospital discharge included the following: age, National Institute of Health stroke scale (NIHSS) score at the time of hospital admission, pulsatility index (PI) on the affected/healthy side, and relative alpha power (RAP). The area under the receiver operating characteristic curve (AUC) was highest (0.831) among the 4 models when age was combined with NIHSS score at the time of hospital admission, TCD parameters (diastolic velocity [VD] on the affected side and PI on the affected/healthy side), and a QEEG parameter (., RAP) for prognostic prediction. However, the AUC for the 4 predictive models did not differ significantly ( > 0.05).

Conclusion

Age, the NIHSS score at the time of hospital admission, TCD parameters, and a QEEG parameter were independent predictors of prognosis 90 d after discharge in patients undergoing MT for AIS due to LVO in the anterior circulation. The model combining the above four parameters may be helpful for prognostic prediction in such patients.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026309198240605102300
2024-06-15
2025-09-10
Loading full text...

Full text loading...

References

  1. LakomkinN. DhamoonM. CarrollK. Prevalence of large vessel occlusion in patients presenting with acute ischemic stroke: a 10-year systematic review of the literature.J. Neurointerv. Surg.201911324124510.1136/neurintsurg‑2018‑014239 30415226
    [Google Scholar]
  2. BoltyenkovA.T. MartinezG. PandyaA. Cost-consequence analysis of advanced imaging in acute ischemic stroke care.Front. Neurol.20211277465710.3389/fneur.2021.774657 34899583
    [Google Scholar]
  3. HigashidaR.T. FurlanA.J. RobertsH. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.Stroke2003348e109e13710.1161/01.STR.0000082721.62796.09 12869717
    [Google Scholar]
  4. WangH. ThevathasanA. DowlingR. BushS. MitchellP. YanB. Streamlining workflow for endovascular mechanical thrombectomy: Lessons learned from a comprehensive stroke center.J. Stroke Cerebrovasc. Dis.20172681655166210.1016/j.jstrokecerebrovasdis.2017.04.021 28579511
    [Google Scholar]
  5. BerkhemerO.A. FransenP.S.S. BeumerD. A randomized trial of intraarterial treatment for acute ischemic stroke.N. Engl. J. Med.20153721112010.1056/NEJMoa1411587 25517348
    [Google Scholar]
  6. GoyalM. DemchukA.M. MenonB.K. Randomized assessment of rapid endovascular treatment of ischemic stroke.N. Engl. J. Med.2015372111019103010.1056/NEJMoa1414905 25671798
    [Google Scholar]
  7. GoyalM. MenonB.K. van ZwamW.H. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials.Lancet2016387100291723173110.1016/S0140‑6736(16)00163‑X 26898852
    [Google Scholar]
  8. NogueiraR.G. JadhavA.P. HaussenD.C. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct.N. Engl. J. Med.20183781112110.1056/NEJMoa1706442 29129157
    [Google Scholar]
  9. PowersW.J. RabinsteinA.A. AckersonT. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association.Stroke20195012e344e41810.1161/STR.0000000000000211 31662037
    [Google Scholar]
  10. LawsJ.C. JordanL.C. PaganoL.M. WellonsJ.C.III WolfM.S. Multimodal neurologic monitoring in children with acute brain injury.Pediatr. Neurol.2022129627110.1016/j.pediatrneurol.2022.01.006 35240364
    [Google Scholar]
  11. SimoninA. RuscaM. SaliouG. LevivierM. DanielR.T. OddoM. Multimodal regional brain monitoring of tissue ischemia in severe cerebral venous sinus thrombosis.Neurocrit. Care201931229730310.1007/s12028‑019‑00695‑7 30805844
    [Google Scholar]
  12. CohenC. GaillotK. IferganH. Quantitative analysis of thrombus migration before mechanical thrombectomy: Determinants and relationship with procedural and clinical outcomes.J. Neuroradiol.202249538539110.1016/j.neurad.2021.11.005 34808221
    [Google Scholar]
  13. ZhangN. ChenF. XieX. Application of quantitative EEG in acute ischemic stroke patients who underwent thrombectomy: A comparison with CT perfusion.Clin. Neurophysiol.2022141243310.1016/j.clinph.2022.06.007 35809546
    [Google Scholar]
  14. ShahripourR.B. AzarpazhoohM.R. AkhuanzadaH. Transcranial Doppler to evaluate postreperfusion therapy following acute ischemic stroke: A literature review.J. Neuroimaging202131584985710.1111/jon.12887 34128299
    [Google Scholar]
  15. ChenC.Y. ChiuC.H. WuI.W. Micronutrients and renal outcomes: A prospective cohort study.Nutrients20221415306310.3390/nu14153063 35893916
    [Google Scholar]
  16. SunH. ZhouF. ZhangG. A novel nomogram for predicting prognosis after mechanical thrombectomy in patients with acute ischemic stroke.Curr. Neurovasc. Res.202118547948810.2174/1567202618666211210154739 34895124
    [Google Scholar]
  17. PalnumK.D. PetersenP. SørensenH.T. Older patients with acute stroke in Denmark: quality of care and short-term mortality. A nationwide follow-up study.Age Ageing2007371909510.1093/ageing/afm134 17965039
    [Google Scholar]
  18. CampbellB.C.V. HillM.D. RubieraM. Safety and efficacy of solitaire stent thrombectomy.Stroke201647379880610.1161/STROKEAHA.115.012360 26888532
    [Google Scholar]
  19. HeH. LiuY.S. LiangH.B. LiY. LiuJ.R. Outcomes of mechanical thrombectomy for acute ischemic stroke when multiple passes are required and associated risk factors.Eur. Neurol.202285430030710.1159/000522559 35504260
    [Google Scholar]
  20. YangM. HuoX. GaoF. Safety and efficacy of heparinization during mechanical thrombectomy in acute ischemic stroke.Front. Neurol.20191029910.3389/fneur.2019.00299 30984103
    [Google Scholar]
  21. KatsanosA.H. SrivastavaA. SahlasD.J. Transcranial Doppler ultrasound to evaluate the risk of hyperperfusion after endovascular stroke thrombectomy.J. Neuroimaging2024341505410.1111/jon.13168 37906129
    [Google Scholar]
  22. KneihslM. HintereggerN. NistlO. Post-reperfusion hyperperfusion after endovascular stroke treatment: a prospective comparative study of TCD versus MRI.J. Neurointerv. Surg.2023151098398810.1136/jnis‑2022‑019213 36137745
    [Google Scholar]
  23. HeY.B. SuY.Y. RajahG.B. Trans-cranial Doppler predicts early neurologic deterioration in anterior circulation ischemic stroke after successful endovascular treatment.Chin. Med. J.2020133141655166110.1097/CM9.0000000000000881 32604178
    [Google Scholar]
  24. KneihslM. NiederkornK. DeutschmannH. Increased middle cerebral artery mean blood flow velocity index after stroke thrombectomy indicates increased risk for intracranial hemorrhage.J. Neurointerv. Surg.201810988288710.1136/neurintsurg‑2017‑013617 29288194
    [Google Scholar]
  25. LeeK.J. JungK.H. ParkC.Y. Increased arterial pulsatility and progression of single subcortical infarction.Eur. Radiol.201727389990610.1007/s00330‑016‑4486‑0 27387877
    [Google Scholar]
  26. NgF.C. CoultonB. ChambersB. ThijsV. Persistently elevated microvascular resistance postrecanalization.Stroke201849102512251510.1161/STROKEAHA.118.021631 30355104
    [Google Scholar]
  27. ChoT.H. NighoghossianN. MikkelsenI.K. Reperfusion within 6 hours outperforms recanalization in predicting penumbra salvage, lesion growth, final infarct, and clinical outcome.Stroke20154661582158910.1161/STROKEAHA.114.007964 25908463
    [Google Scholar]
  28. EilaghiA. BrooksJ. d’EsterreC. Reperfusion is a stronger predictor of good clinical outcome than recanalization in ischemic stroke.Radiology2013269124024810.1148/radiol.13122327 23716707
    [Google Scholar]
  29. KhatriR McKinneyAM SwensonB JanardhanV Blood–brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology201279(13_supplement_1)(Suppl. 1)S52710.1212/WNL.0b013e3182697e70 23008413
    [Google Scholar]
  30. PhamM. BendszusM. Facing time in ischemic stroke: An alternative hypothesis for collateral failure.Clin. Neuroradiol.201626214115110.1007/s00062‑016‑0507‑2 26952017
    [Google Scholar]
  31. ArbaF. PiccardiB. PalumboV. Blood–brain barrier leakage and hemorrhagic transformation: The Reperfusion Injury in Ischemic StroKe (RISK) study.Eur. J. Neurol.20212893147315410.1111/ene.14985 34143500
    [Google Scholar]
  32. WangX. LoE.H. Triggers and mediators of hemorrhagic transformation in cerebral ischemia.Mol. Neurobiol.200328322924410.1385/MN:28:3:229 14709787
    [Google Scholar]
  33. FinniganS. van PuttenM.J.A.M. EEG in ischaemic stroke: Quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management.Clin. Neurophysiol.20131241101910.1016/j.clinph.2012.07.003 22858178
    [Google Scholar]
  34. Baron ShahafD. AbergelE. Sivan HoffmannR. Evaluating a novel EEG-based index for stroke detection under anesthesia during mechanical thrombectomy.J. Neurosurg. Anesthesiol.2024361606810.1097/ANA.0000000000000889 36730962
    [Google Scholar]
  35. DickeyA.S. MitsiasP.D. OlangoW.M. The prognostic value of quantitative EEG in patients undergoing mechanical thrombectomy for acute ischemic stroke.J. Clin. Neurophysiol.202239427628210.1097/WNP.0000000000000769 32804879
    [Google Scholar]
  36. (a) van Stigt MN, Groenendijk EA, van Meenen LCC, et al. Prehospital detection of large vessel occlusion stroke With EEG. Neurology202310124e25223210.1212/WNL.0000000000207831 37848336
    [Google Scholar]
  37. DiedlerJ. SykoraM. JüttlerE. VeltkampR. SteinerT. RuppA. EEG power spectrum to predict prognosis after hemicraniectomy for space-occupying middle cerebral artery infarction.Cerebrovasc. Dis.201029216216910.1159/000262313 19955741
    [Google Scholar]
  38. FinniganS.P. WalshM. RoseS.E. ChalkJ.B. Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes.Clin. Neurophysiol.2007118112525253210.1016/j.clinph.2007.07.021 17889600
    [Google Scholar]
  39. SheorajpandayR.V.A. NagelsG. WeerenA.J.T.M. De SurgelooseD. De DeynP.P. Additional value of quantitative EEG in acute anterior circulation syndrome of presumed ischemic origin.Clin. Neurophysiol.2010121101719172510.1016/j.clinph.2009.10.037 20181521
    [Google Scholar]
  40. BentesC. PeraltaA.R. MartinsH. Seizures, electroencephalographic abnormalities, and outcome of ischemic stroke patients.Epilepsia Open20172444145210.1002/epi4.12075 29588974
    [Google Scholar]
  41. RathakrishnanR. GotmanJ. DubeauF. AngleM. Using continuous electroencephalography in the management of delayed cerebral ischemia following subarachnoid hemorrhage.Neurocrit. Care201114215216110.1007/s12028‑010‑9495‑2 21207187
    [Google Scholar]
  42. ChenY. XuW. WangL. Transcranial Doppler combined with quantitative EEG brain function monitoring and outcome prediction in patients with severe acute intracerebral hemorrhage.Crit. Care20182213610.1186/s13054‑018‑1951‑y 29463290
    [Google Scholar]
  43. QiY. XingY. WangL. Multimodal monitoring in large hemispheric infarction: Quantitative electroencephalography combined with transcranial doppler for prognosis prediction.Front. Neurol.20211272457110.3389/fneur.2021.724571 34956039
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026309198240605102300
Loading
/content/journals/cnr/10.2174/0115672026309198240605102300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test