Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

The endothelial barrier is composed of brain microvascular endothelial cells (BMECs) and tight junction (TJ) proteins. Musk is a valuable ingredient in Traditional Chinese Medicine (TCM). It is used in the treatment of stroke because of its ability to induce resuscitation. The core component of musk is muscone. Previous studies have evidenced that muscone may be involved in the treatment of ischemic stroke (IS), but the underlying mechanism is still unclear. The main objective of this study was to explore the protective effect of muscone on OGD/R-induced endothelial barrier disruption and determine its underlying mechanism.

OGD/R-induced damage to BMECs was assessed using the MTT and LDH assays. The apoptosis level in BMECs was determined using western blot and Hoechst staining. Western blot, immunofluorescence, and phalloidin staining were used to assess the expressions of TJ proteins and pathway proteins expression. A monolayer cell barrier was constructed using BMECs , and the permeability of the barrier was assessed by TEER as well as the transmissivity of sodium fluorescein. Molecular docking, DARTS, and CETSA were used to verify the regulatory effect of muscone on the pathway.

Muscone reduced OGD/R-induced apoptosis of BMEC cells, inhibited the degradation of TJ proteins, promoted the coherent expression of ZO-1 on the membrane, and restored TEER. Mechanistic studies showed that H-89 reversed the promoting effects of muscone on pathway proteins and promoted the disassembly of the actin cytoskeleton, which, in turn, promotes BMEC apoptosis and TJ protein degradation, ultimately disrupting the endothelial barrier.

The inhibition of BMEC apoptosis and improvement of endothelial barrier damage by muscone may be an important mechanism for treating ischemic stroke.

We demonstrated that muscone could reduce OGD/R-induced hyperpermeability of the brain endothelial barrier by activating the PKA/RHOA/MLC pathway.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026377602250520063326
2025-05-29
2025-09-11
Loading full text...

Full text loading...

References

  1. XuG. LiuG. WangZ. LiY. FangW. Circular RNAs: Promising treatment targets and biomarkers of ischemic stroke.Int. J. Mol. Sci.202325117810.3390/ijms2501017838203348
    [Google Scholar]
  2. VenketasubramanianN. Stroke epidemiology in Asia.Cerebrovasc. Dis. Extra2025151819210.1159/00054339939778534
    [Google Scholar]
  3. HilkensN.A. CasollaB. LeungT.W. de LeeuwF.E. Stroke.Lancet2024403104462820283610.1016/S0140‑6736(24)00642‑138759664
    [Google Scholar]
  4. QiuY.M. ZhangC.L. ChenA.Q. WangH.L. ZhouY.F. LiY.N. HuB. Immune cells in the BBB disruption after acute ischemic stroke: Targets for immune therapy?Front. Immunol.20211267874410.3389/fimmu.2021.67874434248961
    [Google Scholar]
  5. AbdullahiW. TripathiD. RonaldsonP.T. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection.Am. J. Physiol. Cell Physiol.20183153C343C35610.1152/ajpcell.00095.201829949404
    [Google Scholar]
  6. AndjelkovicA.V. SituM. Citalan-MadridA.F. StamatovicS.M. XiangJ. KeepR.F. Blood-brain barrier dysfunction in normal aging and neurodegeneration: Mechanisms, impact, and treatments.Stroke202354366167210.1161/STROKEAHA.122.04057836848419
    [Google Scholar]
  7. LiY. ZhangM. LiS. ZhangL. KimJ. QiuQ. LuW. WangJ. Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury.Asian J. Pharm. Sci.202318210078310.1016/j.ajps.2023.10078336891470
    [Google Scholar]
  8. ObermeierB. DanemanR. RansohoffR.M. Development, maintenance and disruption of the blood-brain barrier.Nat. Med.201319121584159610.1038/nm.340724309662
    [Google Scholar]
  9. PiantinoM. LouisF. Shigemoto-MogamiY. KitamuraK. SatoK. YamaguchiT. KawabataK. YamamotoS. IwasakiS. HirabayashiH. MatsusakiM. Brain microvascular endothelial cells derived from human induced pluripotent stem cells as in vitro model for assessing blood-brain barrier transferrin receptor-mediated transcytosis.Mater. Today Bio20221410023210.1016/j.mtbio.2022.10023235308041
    [Google Scholar]
  10. CroftD.R. ColemanM.L. LiS. RobertsonD. SullivanT. StewartC.L. OlsonM.F. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration.J. Cell Biol.2005168224525510.1083/jcb.20040904915657395
    [Google Scholar]
  11. Ketelut-CarneiroN. FitzgeraldK.A. Apoptosis, pyroptosis, and necroptosis-oh my! The many ways a cell can die.J. Mol. Biol.2022434416737810.1016/j.jmb.2021.16737834838807
    [Google Scholar]
  12. ColemanM.L. OlsonM.F. Rho GTPase signalling pathways in the morphological changes associated with apoptosis.Cell Death Differ.20029549350410.1038/sj.cdd.440098711973608
    [Google Scholar]
  13. TkachenkoA. Apoptosis and eryptosis: Similarities and differences.Apoptosis2024293-448250210.1007/s10495‑023‑01915‑438036865
    [Google Scholar]
  14. Povea-CabelloS. Oropesa-ÁvilaM. De la Cruz-OjedaP. Villanueva-PazM. De la MataM. Suárez-RiveroJ. Álvarez-CórdobaM. Villalón-GarcíaI. CotánD. Ybot-GonzálezP. Sánchez-AlcázarJ. Dynamic reorganization of the cytoskeleton during apoptosis: The two coffins hypothesis.Int. J. Mol. Sci.20171811239310.3390/ijms1811239329137119
    [Google Scholar]
  15. DaveK.M. StolzD.B. VennaV.R. QuaicoeV.A. ManiskasM.E. ReynoldsM.J. BabidhanR. DobbinsD.X. FarinelliM.N. SullivanA. BhatiaT.N. YankelloH. ReddyR. BaeY. LeakR.K. ShivaS.S. McCulloughL.D. ManickamD.S. Mitochondria-containing extracellular vesicles (EV) reduce mouse brain infarct sizes and EV/HSP27 protect ischemic brain endothelial cultures.J. Control. Release202335436839310.1016/j.jconrel.2023.01.02536642252
    [Google Scholar]
  16. El MasriR. DelonJ. RHO GTPases: From new partners to complex immune syndromes.Nat. Rev. Immunol.202121849951310.1038/s41577‑021‑00500‑733547421
    [Google Scholar]
  17. LvZ. DingY. CaoW. WangS. GaoK. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects.Int. J. Biol. Sci.202218280080810.7150/ijbs.6545735002526
    [Google Scholar]
  18. JahaniV. KavousiA. MehriS. KarimiG. Rho kinase, a potential target in the treatment of metabolic syndrome.Biomed. Pharmacother.20181061024103010.1016/j.biopha.2018.07.06030119167
    [Google Scholar]
  19. FengS. ZouL. WangH. HeR. LiuK. ZhuH. RhoA/ROCK-2 pathway inhibition and tight junction protein upregulation by catalpol suppresses lipopolysaccaride-induced disruption of blood-brain barrier permeability.Molecules2018239237110.3390/molecules2309237130227623
    [Google Scholar]
  20. LiL. WangN. JinQ. WuQ. LiuY. WangY. Protection of Tong-Qiao-Huo-Xue decoction against cerebral ischemic injury through reduction blood-brain barrier permeability.Chem. Pharm. Bull.201765111004101010.1248/cpb.c17‑0026729093286
    [Google Scholar]
  21. WuS. WangN. HeQ. ChangG. SetoS.W. ChangD. LiangH. The establishment of the method of cell biochromatograpy and analysis of the active ingredients from tongqiaohuoxue decoction acting on the neurocytes.Chem. Pharm. Bull.2018661098399110.1248/cpb.c18‑0045530270244
    [Google Scholar]
  22. Newell-LitwaK.A. HorwitzA.R. Cell migration: PKA and RhoA set the pace.Curr. Biol.20112115R596R59810.1016/j.cub.2011.06.03221820627
    [Google Scholar]
  23. WangS. YuL. GuoH. Gastrodin ameliorates post-stroke depressive-like behaviors through cannabinoid-1 receptor-dependent PKA/RhoA signaling pathway.Mol. Neurobiol.202462136638510.1007/s12035‑024‑04267‑538856794
    [Google Scholar]
  24. LomenickB. HaoR. JonaiN. ChinR.M. AghajanM. WarburtonS. WangJ. WuR.P. GomezF. LooJ.A. WohlschlegelJ.A. VondriskaT.M. PelletierJ. HerschmanH.R. ClardyJ. ClarkeC.F. HuangJ. Target identification using drug affinity responsive target stability (DARTS).Proc. Natl. Acad. Sci. USA200910651219842198910.1073/pnas.091004010619995983
    [Google Scholar]
  25. TuY. TanL. TaoH. LiY. LiuH. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products.Phytomedicine202311615486210.1016/j.phymed.2023.15486237216761
    [Google Scholar]
  26. TuW.J. WangL.D. YanF. PengB. HuaY. LiuM. JiX-M. MaL. ShanC-L. WangY-L. ZengJ-S. ChenH-S. FanD-S. GuY-X. TanG-J. HuB. KangD-Z. LiuJ-M. LiuY-L. LouM. LuoB-Y. PanS-Y. WangL-H. WuJ. China stroke surveillance report 2021.Mil. Med. Res.20231013310.1186/s40779‑023‑00463‑x37468952
    [Google Scholar]
  27. SunB. LuoJ. LiZ. ChenD. WangQ. SiW. Muscone alleviates neuronal injury via increasing stress granules formation and reducing apoptosis in acute ischemic stroke.Exp. Neurol.202437311467810.1016/j.expneurol.2024.11467838185313
    [Google Scholar]
  28. CalabreseB. JonesS.L. Shiraishi-YamaguchiY. LingelbachM. ManorU. SvitkinaT.M. HiggsH.N. ShihA.Y. HalpainS. INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury.Nat. Commun.2022131603710.1038/s41467‑022‑33268‑y36229429
    [Google Scholar]
  29. LiY.C. LiY. ZhangY.N. ZhaoQ. ZhangP.L. SunM.R. LiuB-L. YangH. LiP. Muscone and (+)-Borneol cooperatively strengthen CREB induction of claudin 5 in IL-1β-induced endothelium injury.Antioxidants2022118145510.3390/antiox1108145535892657
    [Google Scholar]
  30. HarilalS. JoseJ. ParambiD.G.T. KumarR. UnnikrishnanM.K. UddinM.S. MathewG.E. PratapR. MarathakamA. MathewB. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules.Brain Res. Bull.202016012114010.1016/j.brainresbull.2020.03.01832315731
    [Google Scholar]
  31. BayirE. SendemirA. Role of intermediate filaments in blood–brain barrier in health and disease.Cells2021106140010.3390/cells1006140034198868
    [Google Scholar]
  32. WangG.Y. WangN. LiaoH.N. Effects of muscone on the expression of P-gp, MMP-9 on blood–brain barrier model in vitro.Cell. Mol. Neurobiol.20153581105111510.1007/s10571‑015‑0204‑825976179
    [Google Scholar]
  33. SternS. HiltonB.J. BurnsideE.R. DuprazS. HandleyE.E. GonyerJ.M. BrakebuschC. BradkeF. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury.Neuron20211092134363455.e910.1016/j.neuron.2021.08.01434508667
    [Google Scholar]
  34. MatsudaJ. Asano-MatsudaK. KitzlerT.M. TakanoT. Rho GTPase regulatory proteins in podocytes.Kidney Int.202199233634510.1016/j.kint.2020.08.03533122025
    [Google Scholar]
  35. GourlayC. AyscoughK. The actin cytoskeleton in ageing and apoptosis.FEMS Yeast Res.20055121193119810.1016/j.femsyr.2005.08.00116144774
    [Google Scholar]
  36. LeadshamJ.E. KotiadisV.N. TarrantD.J. GourlayC.W. Apoptosis and the yeast actin cytoskeleton.Cell Death Differ.201017575476210.1038/cdd.2009.19620019747
    [Google Scholar]
  37. YangZ. LiuY. BanW. LiuH. LvL. ZhangB. LiuA. HouZ. LuJ. ChenX. YouY. Pterostilbene alleviated cerebral ischemia/reperfusion-induced blood–brain barrier dysfunction via inhibiting early endothelial cytoskeleton reorganization and late basement membrane degradation.Food Funct.202314188291830810.1039/D3FO02639F37602757
    [Google Scholar]
  38. HicksK. O’NeilR.G. DubinskyW.S. BrownR.C. TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress.Am. J. Physiol. Cell Physiol.20102986C1583C159310.1152/ajpcell.00458.200920164382
    [Google Scholar]
  39. TornavacaO. ChiaM. DuftonN. AlmagroL.O. ConwayD.E. RandiA.M. SchwartzM.A. MatterK. BaldaM.S. ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation.J. Cell Biol.2015208682183810.1083/jcb.20140414025753039
    [Google Scholar]
  40. QiaoJ. HuangF. LumH. PKA inhibits RhoA activation: A protection mechanism against endothelial barrier dysfunction.Am. J. Physiol. Lung Cell. Mol. Physiol.20032846L972L98010.1152/ajplung.00429.200212588708
    [Google Scholar]
  41. ComerS. NagyZ. BoladoA. von KriegsheimA. GambaryanS. WalterU. PagelO. ZahediR.P. JurkK. SmolenskiA. The RhoA regulators Myo9b and GEF-H1 are targets of cyclic nucleotide-dependent kinases in platelets.J. Thromb. Haemost.202018113002301210.1111/jth.1502832692911
    [Google Scholar]
  42. KoF.C.F. ChanL.K. Man-Fong SzeK. YeungY.S. Yuk-Ting TseE. LuP. YuM.H. Oi-Lin NgI. YamJ.W.P. PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis.Nat. Commun.201341161810.1038/ncomms260423511482
    [Google Scholar]
  43. SuzukiS. AndoF. KitagawaS. HaraY. FujikiT. MandaiS. SusaK. MoriT. SoharaE. RaiT. UchidaS. ZNF185 prevents stress fiber formation through the inhibition of RhoA in endothelial cells.Commun. Biol.2023612910.1038/s42003‑023‑04416‑x36631535
    [Google Scholar]
  44. QiaoJ. HolianO. LeeB.S. HuangF. ZhangJ. LumH. Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA.Am. J. Physiol. Cell Physiol.20082955C1161C116810.1152/ajpcell.00139.200818768928
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026377602250520063326
Loading
/content/journals/cnr/10.2174/0115672026377602250520063326
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test