Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Introduction

Excellent reperfusion following mechanical thrombectomy (MT) is strongly associated with favorable clinical outcomes in patients with acute ischemic stroke due to large vessel occlusion (AIS-LVO). This study aims to investigate the association between the cerebral blood volume (CBV) index-a surrogate marker of collateral status-and the likelihood of achieving excellent reperfusion after MT in AIS-LVO patients.

Methods

A retrospective analysis was conducted on a consecutive series of anterior circulation AIS-LVO patients undergoing MT. CBV index was calculated using RAPID software as the ratio of mean CBV in the penumbral region (Tmax > 6 seconds) to that in the unaffected brain region (Tmax≤4 seconds). The primary outcome was excellent reperfusion, defined as an expanded Thrombolysis in Cerebral Infarction (eTICI) score of 2c/3.

Results

Of the 245 patients (54.70% male, median age 71 years), 152 (62.04%) achieved excellent reperfusion. ROC analysis identified a CBV index ≥0.6 as the optimal cutoff for predicting excellent reperfusion (AUC=0.743). Multivariable logistic regression showed a positive association between the CBV index and excellent reperfusion (adjusted OR = 1.221 per 0.1-point increase, 95% CI: 1.028-1.449, p=0.023). Patients with a favorable CBV index (≥0.6) were significantly more likely to achieve excellent reperfusion (adjusted OR = 2.785, 95% CI: 1.258-6.164, = 0.012).

Discussion

These findings suggest that the CBV index is an independent predictor of excellent reperfusion after MT in AIS-LVO patients. This association may reflect the importance of tissue-level collateral perfusion in achieving successful reperfusion. Limitations include the single-center, retrospective design and the potential for selection bias.

Conclusion

The CBV index is positively associated with excellent reperfusion in AIS-LVO patients undergoing MT. Further prospective studies are warranted to validate these findings and explore the underlying mechanisms.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026376622250617103058
2025-06-20
2025-09-14
Loading full text...

Full text loading...

References

  1. KaesmacherJ. OspelJ.M. MeinelT.R. Thrombolysis in cerebral infarction 2b reperfusions.Stroke202051113461347110.1161/STROKEAHA.120.030157 32993461
    [Google Scholar]
  2. WangR. HuangJ. MohseniA. Predictors of mTICI 2c/3 over 2b in patients successfully recanalized with mechanical thrombectomy.Ann. Clin. Transl. Neurol.2024111899510.1002/acn3.51935 37930267
    [Google Scholar]
  3. GhozyS. KacimiS.E.O. AzzamA.Y. Successful mechanical thrombectomy in acute ischemic stroke: Revascularization grade and functional independence.J. Neurointerv. Surg.202214877978210.1136/neurintsurg‑2021‑018436 35022301
    [Google Scholar]
  4. TurcG. BhogalP. FischerU. European Stroke Organisation (ESO) – European society for minimally invasive neurological therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischaemic strokeendorsed by stroke alliance for Europe (SAFE).Eur. Stroke J.20194161210.1177/2396987319832140 31165090
    [Google Scholar]
  5. TanZ. ParsonsM. BivardA. Optimal tissue reperfusion estimation by computed tomography perfusion post-thrombectomy in acute ischemic stroke.Stroke20215212e760e76310.1161/STROKEAHA.121.034581 34670411
    [Google Scholar]
  6. LiuJ. ZhouY. ZhangL. Balloon guide catheters for endovascular thrombectomy in patients with acute ischaemic stroke due to large-vessel occlusion in China (PROTECT-MT): A multicentre, open-label, blinded-endpoint, randomised controlled trial.Lancet2024404104682165217410.1016/S0140‑6736(24)02315‑8 39579782
    [Google Scholar]
  7. SongZ. FangX. JiaX. Combined collaterals and hemodynamic features to predict the prognosis in acute ischemic stroke patients undergoing mechanical thrombectomy.J. Neurointerv. Surg.202527202402242810.1136/jnis‑2024‑022428 39715668
    [Google Scholar]
  8. SommerJ. DierksenF. ZeeviT. Deep learning for prediction of post-thrombectomy outcomes based on admission CT angiography in large vessel occlusion stroke.Front. Artif. Intell.20247136970210.3389/frai.2024.1369702 39149161
    [Google Scholar]
  9. KellyB. MartinezM. DoH. DEEP MOVEMENT: Deep learning of movie files for management of endovascular thrombectomy.Eur. Radiol.20233385728573910.1007/s00330‑023‑09478‑3 36847835
    [Google Scholar]
  10. LiebeskindD.S. Mapping the collaterome for precision cerebrovascular health: Theranostics in the continuum of stroke and dementia.J. Cereb. Blood Flow Metab.20183891449146010.1177/0271678X17711625 28555527
    [Google Scholar]
  11. FaizyT.D. KabiriR. ChristensenS. Association of venous outflow profiles and successful vessel reperfusion after thrombectomy.Neurology20219624e2903e291110.1212/WNL.0000000000012106 33952649
    [Google Scholar]
  12. FaizyT.D. MlynashM. KabiriR. Favourable arterial, tissue-level and venous collaterals correlate with early neurological improvement after successful thrombectomy treatment of acute ischaemic stroke.J. Neurol. Neurosurg. Psychiatry202293770170610.1136/jnnp‑2021‑328041 35577509
    [Google Scholar]
  13. FaizyT.D. HeitJ.J. Rethinking the collateral vasculature assessment in acute ischemic stroke.Top. Magn. Reson. Imaging202130418118610.1097/RMR.0000000000000274 34397967
    [Google Scholar]
  14. ArenillasJ.F. CortijoE. García-BermejoP. Relative cerebral blood volume is associated with collateral status and infarct growth in stroke patients in SWIFT PRIME.J. Cereb. Blood Flow Metab.201838101839184710.1177/0271678X17740293 29135347
    [Google Scholar]
  15. CortijoE. CallejaA.I. García-BermejoP. Relative cerebral blood volume as a marker of durable tissue-at-risk viability in hyperacute ischemic stroke.Stroke201445111311810.1161/STROKEAHA.113.003340 24281229
    [Google Scholar]
  16. ImaokaY. ShindoS. MiuraM. TerasakiT. MukasaA. TodakaT. Hypoperfusion intensity ratio and CBV index as predictive parameters to identify underlying intracranial atherosclerotic stenosis in endovascular thrombectomy.J. Neuroradiol.202350442443010.1016/j.neurad.2022.10.005 36270500
    [Google Scholar]
  17. RaoV.L. MlynashM. ChristensenS. Collateral status contributes to differences between observed and predicted 24-h infarct volumes in DEFUSE 3.J. Cereb. Blood Flow Metab.202040101966197410.1177/0271678X20918816 32423329
    [Google Scholar]
  18. KaramchandaniR.R. StrongD. RhotenJ.B. Cerebral blood volume index as a predictor of functional independence after basilar artery thrombectomy.J. Neuroimaging202232117117810.1111/jon.12933 34520589
    [Google Scholar]
  19. KoneruM. LakhaniD.A. XuR. Cerebral blood volume index in the era of thrombectomy-treated large and medium vessel ischemic strokes.J. Neurointerv. Surg.202516jnis-2024-02260910.1136/jnis‑2024‑022609 39824593
    [Google Scholar]
  20. FaizyT.D. KabiriR. ChristensenS. Favorable venous outflow profiles correlate with favorable tissue-level collaterals and clinical outcome.Stroke20215251761176710.1161/STROKEAHA.120.032242 33682452
    [Google Scholar]
  21. NaelK. SakaiY. LarsonJ. CT Perfusion collateral index in assessment of collaterals in acute ischemic stroke with delayed presentation: Comparison to single phase CTA.J. Neuroradiol.202249219820410.1016/j.neurad.2021.11.002 34800563
    [Google Scholar]
  22. TanI.Y.L. DemchukA.M. HopyanJ. CT angiography clot burden score and collateral score: Correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct.AJNR Am. J. Neuroradiol.200930352553110.3174/ajnr.A1408 19147716
    [Google Scholar]
  23. YangY. CuiT. LiZ. Benefits of endovascular treatment in late window for acute ischemic stroke selected without CT perfusion: A real-world study.Clin. Interv. Aging20221757758710.2147/CIA.S362119 35497054
    [Google Scholar]
  24. TohK.Z.X. KohM.Y. LohE.D.W. Distal medium vessel occlusions in acute ischaemic stroke – Stent retriever versus direct aspiration: A systematic review and meta-analysis.Eur. Stroke J.20238243444710.1177/23969873231151262 37231692
    [Google Scholar]
  25. AlmekhlafiM.A. MishraS. DesaiJ.A. Not all “successful” angiographic reperfusion patients are an equal validation of a modified tici scoring system.Interv. Neuroradiol.2014201212710.15274/INR‑2014‑10004
    [Google Scholar]
  26. MacLellanA. MlynashM. KempS. Perfusion imaging collateral scores predict infarct growth in non-reperfused DEFUSE 3 patients.J. Stroke Cerebrovasc. Dis.202231110620810.1016/j.jstrokecerebrovasdis.2021.106208 34823091
    [Google Scholar]
  27. HeitkampC. WinkelmeierL. HeitJ.J. Early neurological deterioration in patients with acute ischemic stroke is linked to unfavorable cerebral venous outflow.Eur. Stroke J.20249116217110.1177/23969873231208277 38069665
    [Google Scholar]
  28. BhatR. KwonS. ZanilettiI. MurthyK. LiemR.I. Risk factors associated with venous and arterial neonatal thrombosis in the intensive care unit: A multicentre case-control study.Lancet Haematol.202293e200e20710.1016/S2352‑3026(21)00399‑9 35148820
    [Google Scholar]
  29. BioseI.J. OremosuJ. BhatnagarS. BixG.J. Promising cerebral blood flow enhancers in acute ischemic stroke.Transl. Stroke Res.202314686388910.1007/s12975‑022‑01100‑w 36394792
    [Google Scholar]
  30. AnadaniM. FinitsisS. ClarençonF. Collateral status reperfusion and outcomes after endovascular therapy: Insight from the Endovascular Treatment in Ischemic Stroke (ETIS) Registry.J. Neurointerv. Surg.202214655155710.1136/neurintsurg‑2021‑017553 34140288
    [Google Scholar]
  31. JiaB. ScalzoF. AgbayaniE. Multimodal CT techniques for cerebrovascular and hemodynamic evaluation of ischemic stroke: Occlusion, collaterals, and perfusion.Expert Rev. Neurother.201616551552510.1586/14737175.2016.1165094 26967556
    [Google Scholar]
  32. FainardiE. BustoG. MorottiA. Automated advanced imaging in acute ischemic stroke. Certainties and uncertainties.Eur. J. Radiol. Open20231110052410.1016/j.ejro.2023.100524 37771657
    [Google Scholar]
  33. ChenH. LeeJ.S. MichelP. YanB. ChaturvediS. Endovascular stroke thrombectomy for patients with large ischemic core.JAMA Neurol.202481101085109310.1001/jamaneurol.2024.2500 39133467
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026376622250617103058
Loading
/content/journals/cnr/10.2174/0115672026376622250617103058
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test