Skip to content
2000
image of Electrical Behavior of Hydrogen-Induced Ultra Nano-Crystalline Diamond

Abstract

Introduction

Ultra-nanocrystalline diamond (UNCD) films, in the context of semiconductor and optoelectronic devices, represent a promising avenue for developing highly versatile and efficient technologies, leveraging their unique properties for versatile applications. The development of the unique morphology of UNCD films that could be used in versatile semiconductor/optoelectronics devices.

Methods

In this study, a microwave plasma-enhanced chemical vapor deposition process was used to grow the UNCD thin films on silicon (100) substrates. The process was performed under various gas composition plasma atmospheres (H, N, Ar, and CH) at a pressure of 120 Torr and the substrate temperature of 700°C after the creation of nano-sized diamond powder nucleation sites with a seeding density of ≈2×1012cm−2. Scanning electron microscopy images and X-ray diffraction techniques were used to study the surface morphology and crystal structure. For the Raman spectroscopy technique, four different excitation wavelengths of LASER light (448, 515, 647 and 785 nm) were used to confirm the formation of higher sp3-content, grain boundaries, structural diamond phase, and their dispersive/non-dispersive spectral components. C1s, O 1s, and N 1s X-ray photoelectron spectroscopy technique was employed to study the electronic/bonding structure of UNCD thin films, whereas ultra-violet (UV) photoemission technique was used to determine the work functions (Φ) and valence band maximum (VBM) of the UNCD films.

Discussion

Structural, electrical and electron field emission behaviours are strictly dependent on sp3-content presence in UNCD films structure.

Results

It was observed that the nano-structured UNCD film was dependent on the sp3-content presence in the film structure along with sp3-content and grain boundaries. The lowest Φ and VBM were obtained when the H introduction was 8 sccm and 5 sccm, respectively. Electron field emission results showed that the turn-on electric field (E) is increased with an increase in the introduction of H flow rate during the preparation of UNCD films, resulting in an increase in the sp3-content in the film structure. The current-voltage (I-V) characteristics indicated that the conductivity of the films was low, with a current of ~10-10 A.

Conclusion

The prepared UNCD films were found suitable for the fabrication of transient testing, memristors, and other versatile semiconductor/optoelectronics devices.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615385804250430114730
2025-05-08
2025-09-28
Loading full text...

Full text loading...

References

  1. Carlisle J.A. Auciello O. Ultrananocrystalline diamond properties and applications in biomedical devices. Electrochem. Soc. Interface 2003 12 1 28 31 10.1149/2.F08031IF
    [Google Scholar]
  2. Sankaran K.J. Joseph P.T. Chen H.C. Tai N.H. Lin I.N. Investigation in the role of hydrogen on the properties of diamond films grown using Ar/H2/CH4 microwave plasma. Diamond Related Materials 2011 20 2 232 237 10.1016/j.diamond.2010.12.018
    [Google Scholar]
  3. Birrell J. Carlisle J.A. Auciello O. Gruen D.M. Gibson J.M. Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond. Appl. Phys. Lett. 2002 81 12 2235 2237 10.1063/1.1503153
    [Google Scholar]
  4. Mochalin V.N. Shenderova O. Ho D. Gogotsi Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012 7 1 11 23 10.1038/nnano.2011.209 22179567
    [Google Scholar]
  5. Tsubota T. Fukui T. Saito T. Kusakabe K. Morooka S. Maeda H. Surface morphology and electrical properties of boron-doped diamond films synthesized by microwave-assisted chemical vapor deposition using trimethylboron on diamond (100) substrate. Diamond Related Materials 2000 9 7 1362 1368 10.1016/S0925‑9635(00)00254‑5
    [Google Scholar]
  6. Zou Y.S. Li Z.X. Wu Y.F. Deposition and characterization of smooth ultra-nanocrystalline diamond film in CH4/H2/Ar by microwave plasma chemical vapor deposition. Vacuum 2010 84 11 1347 1352 10.1016/j.vacuum.2010.03.002
    [Google Scholar]
  7. Tu J. Zhao Y. Chan S. Microstructure control and mechanical properties of ultra-nanocrystalline diamond films. Ceram. Int. 2024 50 21 43780 43787 10.1016/j.ceramint.2024.08.231
    [Google Scholar]
  8. Shaobo W. Bing W. Ying X. Research on the rapid growth and structure of ultra-nanocrystalline diamond thin films. Diamond and Abrasives Engineering 2023 43 2 176 181
    [Google Scholar]
  9. Auciello O. Science and technology of a transformational multifunctional ultrananocrystalline diamond (UNCD TM) coating. Functional Diamond 2022 2 1 1 24 10.1080/26941112.2022.2033606
    [Google Scholar]
  10. Villarreal D. Sharma J. Arellano-Jimenez M.J. Auciello O. de Obaldía E. Growth of nitrogen incorporated ultrananocrystalline diamond coating on graphite by hot filament chemical vapor deposition. Materials (Basel) 2022 15 17 6003 10.3390/ma15176003 36079384
    [Google Scholar]
  11. Varnin VP Laptev VA Ralchenko VG The state of the art in the growth of diamond crystals and films. Inorg Mater 2006 42 (S1): S1-S18.(Suppl. 1) 10.1134/S0020168506130012
    [Google Scholar]
  12. Liao M.Y. Meng X.M. Zhou X.T. Hu J.Q. Wang Z.G. Nanodiamond formation by hot-filament chemical vapor deposition on carbon ions bombarded Si. J. Cryst. Growth 2002 236 1-3 85 89 10.1016/S0022‑0248(01)02160‑1
    [Google Scholar]
  13. Zuiker C. Krauss A.R. Gruen D.M. Physical and tribological properties of diamond films grown in argoncarbon plasmas. Thin Solid Films 1995 270 1-2 154 159 10.1016/0040‑6090(95)06882‑1
    [Google Scholar]
  14. Chakrabarti K. Chakrabarti R. Chattopadhyay K.K. Chaudhuri S. Pal A.K. Nano-diamond films produced from CVD of camphor. Diamond Related Materials 1998 7 6 845 852 10.1016/S0925‑9635(97)00312‑9
    [Google Scholar]
  15. Zhou D. Krauss A.R. Qin L.C. Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas. J. Appl. Phys. 1997 82 9 4546 4550 10.1063/1.366190
    [Google Scholar]
  16. Jiao S. Sumant A. Kirk M.A. Gruen D.M. Krauss A.R. Auciello O. Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2. J. Appl. Phys. 2001 90 1 118 122 10.1063/1.1377301
    [Google Scholar]
  17. Wang C.S. Tong G.H. Chen H.C. Shih W.C. Lin I-N. Effect of N2 addition in Ar plasma on the development of microstructure of ultra-nanocrystalline diamond films. Diamond Related Materials 2010 19 2-3 147 152 10.1016/j.diamond.2009.09.009
    [Google Scholar]
  18. Yang S. Man W. Lyu J. Xiao X. You Z. Jiang N. Growth of mirror-like ultra-nanocrystalline diamond (UNCD) films by a facile hybrid CVD approach. Plasma Sci. Technol. 2017 19 5 055505 10.1088/2058‑6272/aa57f7
    [Google Scholar]
  19. Liu J. Hei L-F. Chen G-C. Li C-M. Tang W-Z. Lu F-X. Growth of ultra nanocrystalline diamond films in an Ar-rich CH4/H2/Ar atmosphere with varying H2 concentrations. N. Carbon Mater. 2013 28 2 134 138
    [Google Scholar]
  20. Shalini J. Sankaran K.J. Dong C-L. Lee C-Y. Tai N-H. Lin I-N. In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale 2013 5 3 1159 1167 23288048
    [Google Scholar]
  21. Thoka R.W. Moloi S.J. Sekhar C. Microstructure and electronic properties of ultra-nano-crystalline-diamond thin films. J. Electron Spectrosc. Relat. Phenom. 2020 242 146968 1 7
    [Google Scholar]
  22. Birrell J. Gerbi J.E. Auciello O.A. Carlisle J.A. Investigating the role of hydrogen in ultra-nanocrystalline diamond thin film growth. J. Phys. Condens. Matter 2006 18 32 S1771 S1776 21690864
    [Google Scholar]
  23. Birrell J. Gerbi J.E. Auciello O.A. Gibson J.M. Johnson J. Carlisle J.A. Interpretation of the Raman spectra of ultra nanocrystalline diamond. Diamond Related Materials 2006 14 86 92
    [Google Scholar]
  24. Sankaran K.J. Srinivasu K. Chen H.C. Improvement in plasma illumination properties of ultra nanocrystalline diamond films by grain boundary engineering. J. Appl. Phys. 2014 114 5 054304
    [Google Scholar]
  25. Thoka R.W. Moloi S.J. Ray S.C. Electronic structure and electrical properties of ultra-nanocrystalline diamond (UNCD) for multifunc-tional devices. Dissertation for the degree of Master of Science in Physics at the University of South Africa 2020
    [Google Scholar]
  26. Ray S.C. Lin I-N. Ferroelectric behaviors of ultra-nano-crystalline diamond thin films. Surf. Coat. Tech. 2015 271 247 250
    [Google Scholar]
  27. Lee Y.C. Lin S.J. Lin C.Y. Yip M.C. Fang W. Lin I.N. Pre-nucleation techniques for enhancing nucleation density and adhesion of low temperature deposited ultra-nanocrystalline diamond. Diamond Related Materials 2006 15 11-12 2046 2050 10.1016/j.diamond.2006.09.007
    [Google Scholar]
  28. He C. Sun L. Zhang C. Zhong J. Two viable three-dimensional carbon semiconductors with an entirely sp2 configuration. Phys. Chem. Chem. Phys. 2013 15 2 680 684 10.1039/C2CP43221H 23187896
    [Google Scholar]
  29. Zeng Y. Sakamoto Y. Deposition of ultra nanocrystalline diamond at low temperature using CO, CH4 mixed carbon source. Results in Materials 2021 12 100237
    [Google Scholar]
  30. Veres M. Koós M. Tóth S. Himics L. sp2 carbon defects in nanocrystalline diamond detected by Raman spectroscopy. IOP Conf Ser: Mater Sci Eng 2010
    [Google Scholar]
  31. Klauser F. Steinmüller-Nethl D. Kaindl R. Bertel E. Memmel N. Raman studies of nano‐ and ultra‐nanocrystalline diamond films grown by hot‐filament CVD. Chem. Vap. Depos. 2010 16 4-6 127 135 10.1002/cvde.200906827
    [Google Scholar]
  32. Merkulov V.I. Lannin J.S. Munro C.H. Asher S.A. Veerasamy V.S. Milne W.I. UV studies of tetrahedral bonding in diamondlike amorphous carbon. Phys. Rev. Lett. 1997 78 25 4869 4872 10.1103/PhysRevLett.78.4869
    [Google Scholar]
  33. Wada N. Gaczi P.J. Solin S.A. “Diamond-like” 3-fold coordinated amorphous carbon. J. Non-Cryst. Solids 1980 35-36 543 548 10.1016/0022‑3093(80)90651‑1
    [Google Scholar]
  34. Gicquel A. Silva F. Hassouni K. Diamond growth mechanisms in various environments. J. Electrochem. Soc. 2000 147 2218 2226
    [Google Scholar]
  35. Veres M. Tóth S. Perevedentseva E. Karmenyan A. Koós M. Raman spectroscopy of UNCD grain boundaries. Nanostructured Materials for Advanced Technological Applications NATO Science for Peace and Security Series B: Physics and Biophysics. Dordrecht Springer 2009 115 121 10.1007/978‑1‑4020‑9916‑8_10
    [Google Scholar]
  36. Ferrari A.C. Robertson J. Origin of the 1150 cm-1 Raman mode in nanocrystalline diamond. Phys. Rev. B Condens. Matter Mater. Phys. 2001 63 12 121405 10.1103/PhysRevB.63.121405
    [Google Scholar]
  37. Veres M. Tóth S. Koós M. Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering. Appl. Phys. Lett. 2007 91 3 031913 10.1063/1.2757122
    [Google Scholar]
  38. Sun Z. Shi J.R. Tay B.K. Lau S.P. UV Raman characteristics of nanocrystalline diamond films with different grain size. Diamond Related Materials 2000 9 1979 1983 10.1016/S0925‑9635(00)00349‑6
    [Google Scholar]
  39. Sails S.R. Gardiner D.J. Bowden M. Savage J. Rodway D. Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm. Diamond Related Materials 1996 5 6-8 589 591 10.1016/0925‑9635(96)90031‑X
    [Google Scholar]
  40. Ferrari A.C. Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 1824 2004 362 2477 2512 15482988
    [Google Scholar]
  41. Birrell J. Gerbi J.E. Auciello O. Gibson J.M. Gruen D.M. Carlisle J.A. Bonding structure in nitrogen doped ultra nanocrystalline diamond. J. Appl. Phys. 2003 93 9 5606 5612
    [Google Scholar]
  42. Fujimoto A. Yamada Y. Koinuma M. Sato S. Origins of sp(3)C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal. Chem. 2016 88 12 6110 6114 27264720
    [Google Scholar]
  43. Huang B.R. Wu C.H. Ke W.Z. Surface analysis of boron-doped polycrystalline diamond films deposited by a microwave plasma chemical vapor deposition system. Mater. Chem. Phys. 1999 59 143 148
    [Google Scholar]
  44. Uda M. Nakamura A. Yamamoto T. Fujimoto Y. Work function of polycrystalline Ag, Au and Al. J Elect Spect Relat Phen 1998 88-91 643 648
    [Google Scholar]
  45. Mansour A. Ugolini D. Photoelectron-spectroscopy study of amorphous a-CNx:H. Phys. Rev. B Condens. Matter 1993 47 16 10201 10209 10005128
    [Google Scholar]
  46. McFeely F.R. Kowalczyk S.P. Ley L. Cavell R.G. Pollak R.A. Shirley D.A. X-ray photoemission studies of diamond, graphite, and glassy carbon valence bands. Phys Rev B 1974 9 5268 5278 10.1103/PhysRevB.9.5268
    [Google Scholar]
  47. Chen Y.C. Tai N.H. Lin I.N. Substrate temperature effects on the electron field emission properties of nitrogen doped ultra-nanocrystalline diamond. Diamond Related Materials 2008 17 4-5 457 461 10.1016/j.diamond.2007.10.020
    [Google Scholar]
  48. Guo W.H. Huang J.T. Hwang J. Hysteresis loop in the current-voltage characteristic of A1/boron-doped polycrystalline diamond Schottky contact. Diamond Related Materials 1997 6 12 16 10.1016/S0925‑9635(96)00592‑4
    [Google Scholar]
  49. Panda K. Kim J.E. Park J.Y. Nitrogen ion implanted ultrananocrystalline diamond films: A better electrostatic charge storage medium. Carbon 2019 141 123 133 10.1016/j.carbon.2018.09.052
    [Google Scholar]
  50. Liu W.L. Shamsa M. Calizo I. Balandin A.A. Ralchenko V. Popovich A. Thermal conduction in nanocrystalline diamond films: Effects of the grain boundary scattering and nitrogen doping. Appl. Phys. Lett. 2006 89 171915 10.1063/1.2364130
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615385804250430114730
Loading
/content/journals/cnm/10.2174/0124054615385804250430114730
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test