Skip to content
2000
image of Quality by Design Approach for the Development of Polymeric Nanoparticles: A Focus on Capecitabine

Abstract

Introduction/Objective

Polymeric nanoparticles (PNPs) have emerged as promising drug delivery systems to overcome the limitations of conventional chemotherapeutics. Capecitabine, a prodrug of 5-fluorouracil (5-FU), is widely used in cancer therapy but suffers from poor bioavailability and systemic toxicity. The application of the Quality by Design (QbD) framework in PNP development provides a structured approach to address these challenges. This review examines the QbD principles in the formulation and optimization of capecitabine-loaded PNPs, focusing on strategies to enhance therapeutic efficacy and minimize adverse effects.

Methods

The QbD approach encompasses defining a Quality Target Product Profile (QTPP), identifying Critical Quality Attributes (CQAs), and conducting risk assessments to pinpoint Critical Material Attributes (CMAs) and Critical Process Parameters (CPPs). Techniques such as Design of Experiments (DoE) facilitate systematic optimization.

Results

Incorporating QbD principles ensures the development of robust PNP formulations with improved encapsulation efficiency, controlled drug release, and targeted delivery. Studies highlight the use of biodegradable polymers like PLGA, chitosan, and PEG for superior biocompatibility and stability. Analytical methods validate the consistency and quality of the nanoparticles.

Conclusion

The QbD framework enables the rational design of capecitabine-loaded PNPs with enhanced bioavailability and reduced toxicity, contributing to safer and more effective cancer treatments. Future research should explore novel polymeric systems and advanced manufacturing technologies to expand the therapeutic potential of PNPs in oncology.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615368563250319002905
2025-04-04
2025-09-28
Loading full text...

Full text loading...

References

  1. Tosi G. Costantino L. Ruozi B. Forni F. Vandelli M.A. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin. Drug Deliv. 2008 5 2 155 174 10.1517/17425247.5.2.155 18248316
    [Google Scholar]
  2. Vauthier C. Ponchel G. Polymer nanoparticles for nanomedicines. Springer 2017
    [Google Scholar]
  3. Zhao J. He Y. Wang Y. Wang W. Yan L. Luo J. An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications. Tribol. Int. 2016 97 14 20 10.1016/j.triboint.2015.12.006
    [Google Scholar]
  4. Esmaeili F. Ghahremani M.H. Esmaeili B. Khoshayand M.R. Atyabi F. Dinarvand R. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int. J. Pharm. 2008 349 1-2 249 255 10.1016/j.ijpharm.2007.07.038 17875373
    [Google Scholar]
  5. Wagstaff A.J. Ibbotson T. Goa K.L. Capecitabine: A review of its pharmacology and therapeutic efficacy in the management of advanced breast cancer. Drugs 2003 63 2 217 236 10.2165/00003495‑200363020‑00009 12515569
    [Google Scholar]
  6. Alzahrani S. Al Doghaither H. Al-ghafari A. Pushparaj P. 5 Fluorouracil and capecitabine therapies for the treatment of colorectal cancer (Review). Oncol. Rep. 2023 50 4 175 10.3892/or.2023.8612 37594133
    [Google Scholar]
  7. Koukourakis G.V. Kouloulias V. Koukourakis M.J. Zacharias G.A. Zabatis H. Kouvaris J. Efficacy of the oral fluorouracil pro-drug cape-citabine in cancer treatment: A review. Molecules 2008 13 8 1897 1922 10.3390/molecules13081897 18794792
    [Google Scholar]
  8. Mikhail S.E. Sun J.F. Marshall J.L. Safety of capecitabine: A review. Expert Opin. Drug Saf. 2010 9 5 831 841 10.1517/14740338.2010.511610 20722491
    [Google Scholar]
  9. Bhattacharya S. Prajapati B.G. Singh S. Polymeric nanoparticles in colorectal cancer. In: Colorectal Cancer. Elsevier 2024 203 231 10.1016/B978‑0‑443‑13870‑6.00020‑9
    [Google Scholar]
  10. Siddiqui N.S. Godara A. Byrne M.M. Saif M.W. Capecitabine for the treatment of pancreatic cancer. Expert Opin. Pharmacother. 2019 20 4 399 409 10.1080/14656566.2018.1560422 30649964
    [Google Scholar]
  11. Pourmadadi M. Maleki M. Shamsabadipoura A. Rahdar A. Ghotekar S. Advancements in capecitabine-loaded nanocomposites as a cut-ting-edge cancer therapy-A review. Bionanoscience 2024 14 1 337 345 10.1007/s12668‑023‑01240‑9
    [Google Scholar]
  12. Upadhyay M. Adena S.K.R. Vardhan H. Yadav S.K. Mishra B. Development of biopolymers based interpenetrating polymeric network of capecitabine: A drug delivery vehicle to extend the release of the model drug. Int. J. Biol. Macromol. 2018 115 907 919 10.1016/j.ijbiomac.2018.04.123 29705110
    [Google Scholar]
  13. Mishra V. Thakur S. Patil A. Shukla A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin. Drug Deliv. 2018 15 8 737 758 10.1080/17425247.2018.1504768 30044646
    [Google Scholar]
  14. Lee S.H. Kim J-K. Jee J-P. Jang D-J. Park Y-J. Kim J-E. Quality by Design (QbD) application for the pharmaceutical development process. J. Pharm. Investig. 2022 52 6 649 682 10.1007/s40005‑022‑00575‑x
    [Google Scholar]
  15. Jena G.K. Patra C.N. Panigrahi K.C. Sruti J. Patra P. Parhi R. QbD enabled optimization of solvent shifting method for fabrication of PLGA-based nanoparticles for promising delivery of Capecitabine for antitumor activity. Drug Deliv. Transl. Res. 2022 12 6 1521 1539 10.1007/s13346‑021‑01042‑0 34505271
    [Google Scholar]
  16. Beg S. Introduction to quality by design (QbD): Fundamentals, principles, and applications. In: Pharmaceutical quality by design. Elsevier 2019 1 17 10.1016/B978‑0‑12‑815799‑2.00001‑0
    [Google Scholar]
  17. Patel H. Parmar S. Patel B. A comprehensive review on quality by design (QbD) in pharmaceuticals. Int. J. Pharm. Sci. Rev. Res. 2013 21 1 223 236
    [Google Scholar]
  18. Gaspar L.M.A.C. Dórea A.C.S. Droppa-Almeida D. Development and characterization of PLGA nanoparticles containing antibiotics. J. Nanopart. Res. 2018 20 11 289 10.1007/s11051‑018‑4387‑z
    [Google Scholar]
  19. Cañadas C. Alvarado H. Calpena A.C. In vitro ,ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int. J. Pharm. 2016 511 2 719 727 10.1016/j.ijpharm.2016.07.055 27480398
    [Google Scholar]
  20. Cruz K.P. Patricio B.F.C. Pires V.C. Development and characterization of PLGA nanoparticles containing 17-DMAG, an Hsp90 inhibi-tor. Front Chem. 2021 9 644827 10.3389/fchem.2021.644827 34055735
    [Google Scholar]
  21. Javadzadeh Y. Ahadi F. Davaran S. Mohammadi G. Sabzevari A. Adibkia K. Preparation and physicochemical characterization of naproxen–PLGA nanoparticles. Colloids Surf. B Biointerfaces 2010 81 2 498 502 10.1016/j.colsurfb.2010.07.047 20719477
    [Google Scholar]
  22. Ali M. van Gent M.E. de Waal A.M. Physical and functional characterization of PLGA nanoparticles containing the antimicrobial peptide SAAP-148. Int. J. Mol. Sci. 2023 24 3 2867 10.3390/ijms24032867 36769188
    [Google Scholar]
  23. Operti M.C. Bernhardt A. Sincari V. Industrial scale manufacturing and downstream processing of PLGA-based nanomedicines suitable for fully continuous operation. Pharmaceutics 2022 14 2 276 10.3390/pharmaceutics14020276 35214009
    [Google Scholar]
  24. Jain S. Cyclosporin A loaded PLGA nanoparticle: Preparation, optimization, in-vitro characterization and stability studies. Curr. Nanosci. 2010 6 4 422 431 10.2174/157341310791658937
    [Google Scholar]
  25. Subbarao N. Nanoparticle sterility and sterilization of nanomaterials. In: Handbook of Immunological Properties of Engineered Nano-materials. Singapore WORLD SCIENTIFIC 2016 10.1142/9789813140431_0003
    [Google Scholar]
  26. Elsayed S.I. Girgis G.N.S. El-Dahan M.S. Formulation and evaluation of pravastatin sodium-loaded PLGA nanoparticles: In vitro–in vivo studies assessment. Int. J. Nanomedicine 2023 18 721 742 10.2147/IJN.S394701 36816332
    [Google Scholar]
  27. Türeli N.G. Türeli A.E. Good manufacturing practices (GMP) of magnetic nanoparticles. In: Clinical Applications of Magnetic Nanoparti-cles. Boca Raton, FL CRC Press 2018 475 484
    [Google Scholar]
  28. Chokshi H. Schostack K. Steinbach R. Pharmaceutical Analysis Documentation. In: Separation Science and Technology. Elsevier 2011 10.1016/B978‑0‑12‑375680‑0.00014‑0
    [Google Scholar]
  29. Lathaeswari G. Preparation and evaluation of capecitabine loaded eudragit nanoparticles for colon targeting. Int J Pharmacol Bio Sci Vol 2013 7 2 33 42
    [Google Scholar]
  30. Shanmuganathan C. Preparation and in-vitro evaluation of Fe3O4 encapsulated by chitosan loaded capecitabine nanoparticles for the treatment of breast. Int J Drug Deliv Technol 2016 6 3 52 57
    [Google Scholar]
  31. Sultan M.H. Almoshari Y. Mohan S. Capecitabine-loaded NLC for breast cancer treatment: Preparation, characterization, and in vitro evaluation. Curr. Drug Deliv. 2024 39076098
    [Google Scholar]
  32. Gomathi T. Santhanalakshmi K. Monika A.K. Chitosan-lysine nanoparticles for sustained delivery of capecitabine: Formulation, characterization, and evaluation of anticancer and antifungal properties with molecular docking insights on anti-inflammatory potential. Inorg. Chem. Commun. 2024 167 112797 10.1016/j.inoche.2024.112797
    [Google Scholar]
  33. Bhattacharya S. Page A. Shinde P. Capecitabine loaded potato starch-chitosan nanoparticles: A novel approach for targeted therapy and improved outcomes in aggressive colon cancer. Eur. J. Pharm. Biopharm. 2024 200 114328 10.1016/j.ejpb.2024.114328 38763329
    [Google Scholar]
  34. Kuchekar A Pawar A Capecitabine loaded polymeric micelles: Formulation, characterization and cytotoxicity study. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies. Chennai, India. 2013 24 26 412 415 10.1109/ICANMEET.2013.6609332
    [Google Scholar]
  35. Wei K. Peng X. Zou F. Folate-decorated PEG–PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery. Int. J. Pharm. 2014 464 1-2 225 233 10.1016/j.ijpharm.2013.12.047 24463073
    [Google Scholar]
  36. Mohammadpour-Haratbar A. Zare Y. Rhee K.Y. A review on drug delivery systems containing polymer nanocomposites for breast cancer treatment. Polym. Rev. 2024 64 2 490 527 10.1080/15583724.2023.2262542
    [Google Scholar]
  37. Jagtiani E. Advancements in nanotechnology for food science and industry. Food Front. 2022 3 1 56 82 10.1002/fft2.104
    [Google Scholar]
  38. Nguyen K.T. Zhao Y. Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc. Chem. Res. 2015 48 12 3016 3025 10.1021/acs.accounts.5b00316 26605438
    [Google Scholar]
  39. Liu X. Yang Y. Urban M.W. Stimuli‐responsive polymeric nanoparticles. Macromol. Rapid Commun. 2017 38 13 1700030 10.1002/marc.201700030 28497535
    [Google Scholar]
  40. de Dios A.S. Díaz-García M.E. Multifunctional nanoparticles: Analytical prospects. Anal. Chim. Acta 2010 666 1-2 1 22 10.1016/j.aca.2010.03.038 20433959
    [Google Scholar]
  41. Mills J.K. Needham D. Targeted drug delivery. Expert Opin. Ther. Pat. 1999 9 11 1499 1513 10.1517/13543776.9.11.1499
    [Google Scholar]
  42. Mura S. Couvreur P. Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev. 2012 64 13 1394 1416 10.1016/j.addr.2012.06.006 22728642
    [Google Scholar]
  43. Gadde S. Multi-drug delivery nanocarriers for combination therapy. MedChemComm 2015 6 11 1916 1929 10.1039/C5MD00365B
    [Google Scholar]
  44. Boyer K.K. Leong G.K. Ward P.T. Krajewski L.J. Unlocking the potential of advanced manufacturing technologies. J. Oper. Manage. 1997 15 4 331 347 10.1016/S0272‑6963(97)00009‑0
    [Google Scholar]
  45. Bhoop B.S. Quality by Design (QbD) for holistic pharma excellence and regulatory compliance. Pharm. Times 2014 46 8 26 33
    [Google Scholar]
  46. McClements J. McClements D.J. Standardization of nanoparticle characterization: Methods for testing properties, stability, and functionali-ty of edible nanoparticles. Crit. Rev. Food Sci. Nutr. 2016 56 8 1334 1362 10.1080/10408398.2014.970267 25850035
    [Google Scholar]
  47. Cabeza L. Perazzoli G. Mesas C. Nanoparticles in colorectal cancer therapy: Latest in vivo assays, clinical trials, and patents. AAPS PharmSciTech 2020 21 5 178 10.1208/s12249‑020‑01731‑y 32591920
    [Google Scholar]
  48. Ishitsuka H. Capecitabine: Preclinical pharmacology studies. Invest. New Drugs 2000 18 4 343 354 10.1023/A:1006497231579 11081570
    [Google Scholar]
  49. Latha S. Formulation and evaluation of capecitabine nanoparticles for cancer therapy. Int J Biol Pharm Res 2012 3 3 477 487
    [Google Scholar]
  50. Ghosh D. Development, characterization and evaluation of Capecitabine loaded Chitosan-tripolyphosphate nanoparticles Dissertations 2016
    [Google Scholar]
  51. Ragelle H. Danhier F. Préat V. Langer R. Anderson D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 2017 14 7 851 864 10.1080/17425247.2016.1244187 27730820
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615368563250319002905
Loading
/content/journals/cnm/10.2174/0124054615368563250319002905
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test