Skip to content
2000
image of Current Insights into Polymeric Nanocarriers for Delivery of Phytomedicines in Breast Cancer Therapy

Abstract

Background and Objectives

Globally, breast cancer is the most prevalent malignant disease that affects females and is one of the major causes of cancer-related death for women. The first line of treatment for breast cancer consists of chemotherapy drugs combined with radiation and surgical intervention. However, because therapeutic agents do not yet reach the tumor site at sufficient concentrations, resulting in decreased pharmacokinetics and increased systemic adverse effects, pharmacotherapy has been altered. Chemotherapy for breast cancer is more effective and successful, and is less toxic when nanotechnology is employed. Many cancer forms develop multidrug resistance, which appears to be a critical factor in the failure of numerous chemotherapy treatment classes. Phytofabricated nanoparticles have been developed recently for targeted herbal drug administration, molecular biology screening of biological markers for malignancies, and cancer diagnostics. Phytofabricated polymeric nanoparticles are the most prominent and emerging nanocarriers that have gained much research attention in the field of novel drug delivery systems for real-time treatment of breast cancer (BC) tumors.

Methods

In herbal drug delivery technologies, the advancement of phytopharmacological science has led to the elucidation of the composition of phytoconstituents and their biological activities. Nano-sized herbal medicines can overcome inadequate bioavailability, degradation and toxicity, uneven distribution, intestinal absorption, and a non-specific site of action. The combinatorial strategy of employing both nanotechnology and herbal medications allows for therapeutic potentiation, which reduces the required dose and undesirable harmful effects. In the present study, a comprehensive search utilizes databases such as Google Scholar, PubMed, Embase, Scopus, Web of Science, , to locate the original research papers. In addition, diligent work is done to gather and update the progress of novel polymer-based nanocarriers for treating BC in the form of tables.

Results

Researchers have devised innovative approaches to create and cultivate nanomedicine specifically targeted at breast cancer to attain even greater gains in drug resistance reversal, antitumorigenicity, antimetastasis, and disease specificity. Nanoparticles' exceptionally high surface area-to-volume ratio makes it possible to modify their surface characteristics for better therapeutic outcomes, ., cancer targeting, enhanced endocytosis and transcytosis, and extended circulation. This allows for more effective entry into tumor sites, metastasis, and cancer cells. Additionally, co-administration of phytochemical combinations may enhance additive or synergistic anticancer effects.

Conclusion

Breast cancer treatment with phytofabricated polymeric nanoparticles appears to be a potential avenue of research. Furthermore, the utilization of phytofabricated polymeric nanoparticles in conjunction with other loaded phytoconstituents or chemotherapeutics demonstrated encouraging outcomes in the treatment of BC. This article depicts a comprehensive new finding that formulation scientists are developing on phytochemical-based polymeric nanocarriers to pave the way for future pharmaceutical nanotechnology research.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615358250250709130728
2025-07-23
2025-09-28
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Momenimovahed Z. Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer 2019 11 151 164 10.2147/BCTT.S176070 31040712
    [Google Scholar]
  3. Upadhyay A.K. Prakash A. Clinicopathological profile of breast cancer at a tertiary cancer center in jharkhand, india: A descriptive cohort study. Cureus 2023 15 6 e39990 10.7759/cureus.39990 37416049
    [Google Scholar]
  4. Karpuz M. Silindir-Gunay M. Ozer A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm. 2018 33 2 39 51 10.1089/cbr.2017.2378 29634415
    [Google Scholar]
  5. Sohel Md. Aktar S. Biswas P. Amin Md, Mamun AA. Exploring the anti-cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review. Cancer Med. 2023 12 13 14556 14583
    [Google Scholar]
  6. Luque-Bolivar A. Pérez-Mora E. Villegas V.E. Rondón-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer 2020 12 211 229 10.2147/BCTT.S270799 33204149
    [Google Scholar]
  7. Nobili S. Lippi D. Witort E. Natural compounds for cancer treatment and prevention. Pharmacol. Res. 2009 59 6 365 378 10.1016/j.phrs.2009.01.017 19429468
    [Google Scholar]
  8. Rodriguez E.B. Flavier M.E. Rodriguez-Amaya D.B. Amaya-Farfán J. Phytochemicals and functional foods. Current situation and prospect for developing countries. Segur. Aliment. Nutr. 2015 13 1 1 22 10.20396/san.v13i1.1841
    [Google Scholar]
  9. Cragg G.M. Grothaus P.G. Newman D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 2009 109 7 3012 3043 10.1021/cr900019j 19422222
    [Google Scholar]
  10. Sharma S.B. Gupta R. Drug development from natural resource: A systematic approach. Mini Rev. Med. Chem. 2015 15 1 52 57 10.2174/138955751501150224160518 25986040
    [Google Scholar]
  11. Chavda V.P. Nalla L.V. Balar P. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers 2023 15 4 1023 10.3390/cancers15041023 36831369
    [Google Scholar]
  12. Chavda V.P. Vuppu S. Bezbaruah R. Phytochemical loaded nanovehicles of biopolymer for breast cancer: A systemic review. Clin Complement Med Pharmacol 2023 3 4 100114 10.1016/j.ccmp.2023.100114
    [Google Scholar]
  13. Clusan L. Le Goff P. Flouriot G. Pakdel F. A closer look at estrogen receptor mutations in breast cancer and their implications for estrogen and antiestrogen responses. Int. J. Mol. Sci. 2021 22 2 756 10.3390/ijms22020756 33451133
    [Google Scholar]
  14. Kowalczyk W. Waliszczak G. Jach R. Dulińska-Litewka J. Steroid receptors in breast cancer: Understanding of molecular function as a basis for effective therapy development. Cancers 2021 13 19 4779 10.3390/cancers13194779 34638264
    [Google Scholar]
  15. Sircoulomb F. Bekhouche I. Finetti P. Genome profiling of ERBB2-amplified breast cancers. BMC Cancer 2010 10 1 539 10.1186/1471‑2407‑10‑539 20932292
    [Google Scholar]
  16. Harvey J.M. Clark G.M. Osborne C.K. Allred D.C. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 1999 17 5 1474 1481 10.1200/JCO.1999.17.5.1474 10334533
    [Google Scholar]
  17. Sørlie T. Perou C.M. Tibshirani R. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001 98 19 10869 10874 10.1073/pnas.191367098 11553815
    [Google Scholar]
  18. Sørlie T. Borgan E. Myhre S. The importance of gene-centring microarray data. Lancet Oncol. 2010 11 8 719 720 10.1016/S1470‑2045(10)70174‑1 20688275
    [Google Scholar]
  19. Yin L. Duan J.J. Bian X.W. Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 22 1 61 10.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  20. Feng Y. Spezia M. Huang S. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018 5 2 77 106 10.1016/j.gendis.2018.05.001 30258937
    [Google Scholar]
  21. Obidiro O. Battogtokh G. Akala E.O. Triple negative breast cancer treatment options and limitations: Future outlook. Pharmaceutics 2023 15 7 1796 10.3390/pharmaceutics15071796 37513983
    [Google Scholar]
  22. Pérez-Herrero E. Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015 93 52 79 10.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  23. Farahani M.K. Gharibshahian M. Rezvani A. Vaez A. Breast cancer brain metastasis: From etiology to state-of-the-art modeling. J. Biol. Eng. 2023 17 1 41 10.1186/s13036‑023‑00352‑w 37386445
    [Google Scholar]
  24. Sun Y.L. Patel A. Kumar P. Chen Z.S. Role of ABC transporters in cancer chemotherapy. Chin. J. Cancer 2012 31 2 51 57 10.5732/cjc.011.10466 22257384
    [Google Scholar]
  25. Hida K Maishi N Sakurai Y Hida Y Harashima H Heterogeneity of tumor endothelial cells and drug delivery. Adv Drug Deliv Rev 2016 99 Pt B 140 147 10.1016/j.addr.2015.11.008 26626622
    [Google Scholar]
  26. Singh S. Singh S. Lillard J.W. Jr Singh R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine 2017 12 6205 6218 10.2147/IJN.S140325 28883730
    [Google Scholar]
  27. Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014 4 177 10.3389/fphar.2013.00177 24454289
    [Google Scholar]
  28. Kapinova A. Kubatka P. Golubnitschaja O. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med. 2018 23 1 36 10.1186/s12199‑018‑0724‑1 30092754
    [Google Scholar]
  29. Shrihastini V. Muthuramalingam P. Adarshan S. Plant derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview. Cancers 2021 13 24 6222 10.3390/cancers13246222 34944840
    [Google Scholar]
  30. Mazumder K. Aktar A. Roy P. A review on mechanistic insight of plant derived anticancer bioactive phytocompounds and their structure activity relationship. Molecules 2022 27 9 3036 10.3390/molecules27093036 35566385
    [Google Scholar]
  31. Greenwell M. Rahman P.K.S.M. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res. 2015 6 10 4103 4112 26594645
    [Google Scholar]
  32. Boon H.S. Olatunde F. Zick S.M. Trends in complementary/alternative medicine use by breast cancer survivors: Comparing survey data from 1998 and 2005. BMC Womens Health 2007 7 1 4 10.1186/1472‑6874‑7‑4 17397542
    [Google Scholar]
  33. Ma H. Carpenter C.L. Sullivan-Halley J. Bernstein L. The roles of herbal remedies in survival and quality of life among long-term breast cancer survivors - Results of a prospective study. BMC Cancer 2011 11 1 222 10.1186/1471‑2407‑11‑222 21645383
    [Google Scholar]
  34. Ho J. Leung Y. Chan C. Herbal medicine in the treatment of cancer. Curr. Med. Chem. Anticancer Agents 2002 2 2 209 214 10.2174/1568011023354164 12678744
    [Google Scholar]
  35. Musthaba S.M. Baboota S. Ahmed S. Ahuja A. Ali J. Status of novel drug delivery technology for phytotherapeutics. Expert Opin. Drug Deliv. 2009 6 6 625 637 10.1517/17425240902980154 19505192
    [Google Scholar]
  36. Riehemann K. Schneider S.W. Luger T.A. Godin B. Ferrari M. Fuchs H. Nanomedicine--Challenge and perspectives. Angew. Chem. Int. Ed. 2009 48 5 872 897 10.1002/anie.200802585 19142939
    [Google Scholar]
  37. Dashputre N.L. Kadam J.D. Laddha U.D. Patil S.B. Udavant P.B. Kakad S.P. Targeting breast cancer using phytoconstituents: Nanomedicine-based drug delivery. Eur J Med Chem Rep 2023 9 100116 10.1016/j.ejmcr.2023.100116
    [Google Scholar]
  38. Blanco E. Shen H. Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015 33 9 941 951 10.1038/nbt.3330 26348965
    [Google Scholar]
  39. Yap K.M. Sekar M. Fuloria S. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 7891 7941 10.2147/IJN.S328135 34880614
    [Google Scholar]
  40. Yousefi Rizi H.A. Shin D.H. Yousefi Rizi S. Polymeric nanoparticles in cancer chemotherapy: A narrative review. Iran. J. Public Health 2022 51 2 226 239 10.18502/ijph.v51i2.8677 35866132
    [Google Scholar]
  41. Wei Q.Y. He K.M. Chen J.L. Xu Y.M. Lau A.T.Y. Phytofabrication of nanoparticles as novel drugs for anticancer applications. Molecules 2019 24 23 4246 10.3390/molecules24234246 31766544
    [Google Scholar]
  42. Vieira J.A. Araujo J.L. Silva M.D.S. Advantages of the use of polymeric nanoparticles in the treatment of breast cancer: A systematic review. Int. J. Complement. Altern. Med. 2022 15 5 266 272 10.15406/ijcam.2022.15.00618
    [Google Scholar]
  43. Patnaik A. Jena G.K. Patra C.N. Recent advancements and patent search on polymeric nanoparticles. Bionanoscience 2023 13 4 1463 1469 10.1007/s12668‑023‑01220‑z
    [Google Scholar]
  44. Tewari A.K. Upadhyay S.C. Kumar M. Insights on development aspects of polymeric nanocarriers: The translation from bench to clinic. Polymers 2022 14 17 3545 10.3390/polym14173545 36080620
    [Google Scholar]
  45. Yadav P. Ambudkar S.V. Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J. Nanobiotechnology 2022 20 1 423 10.1186/s12951‑022‑01626‑z 36153528
    [Google Scholar]
  46. Xue X. Liang X.J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin. J. Cancer 2012 31 2 100 109 10.5732/cjc.011.10326 22237039
    [Google Scholar]
  47. van Vlerken L.E. Duan Z. Little S.R. Seiden M.V. Amiji M.M. Biodistribution and pharmacokinetic analysis of Paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol. Pharm. 2008 5 4 516 526 10.1021/mp800030k 18616278
    [Google Scholar]
  48. Babu A. Munshi A. Ramesh R. Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev. Ind. Pharm. 2017 43 9 1391 1401 10.1080/03639045.2017.1313861 28523942
    [Google Scholar]
  49. Zhang C. Zhu W. Liu Y. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci. Rep. 2016 6 1 23859 10.1038/srep23859 27030638
    [Google Scholar]
  50. Subhan M.A. Torchilin V.P. Biocompatible polymeric nanoparticles as promising candidates for drug delivery in cancer treatment. Handbook of Polymer and Ceramic Nanotechnology. Cham Springer 2021 855 872
    [Google Scholar]
  51. Gagliardi A. Giuliano E. Venkateswararao E. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 2021 12 601626 10.3389/fphar.2021.601626 33613290
    [Google Scholar]
  52. Beach M.A. Nayanathara U. Gao Y. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024 124 9 5505 5616 10.1021/acs.chemrev.3c00705 38626459
    [Google Scholar]
  53. Li B. Li Q. Mo J. Dai H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front. Pharmacol. 2017 8 51 10.3389/fphar.2017.00051 28261093
    [Google Scholar]
  54. Bonifácio B.V. Silva P.B. Ramos M.A.S. Negri K.M.S. Bauab T.M. Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine 2014 9 1 15 24363556
    [Google Scholar]
  55. Li J. Wang Q. Xia G. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics 2023 15 9 2233 10.3390/pharmaceutics15092233 37765202
    [Google Scholar]
  56. Byrne J.D. Betancourt T. Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008 60 15 1615 1626 10.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  57. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001 41 1 189 207 10.1016/S0065‑2571(00)00013‑3 11384745
    [Google Scholar]
  58. Carmeliet P. Jain R.K. Angiogenesis in cancer and other diseases. Nature 2000 407 6801 249 257 10.1038/35025220 11001068
    [Google Scholar]
  59. Sahoo B.M. Shree D. Banik B.K. Borah P. Jain A. Mahapatra M.K. Nano-based drug delivery of anticancer agents. Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Second Edition Elsevier 2024 43 60 10.1016/B978‑0‑443‑16164‑3.00002‑9
    [Google Scholar]
  60. Suk JS Xu Q Kim N Hanes J Ensign LM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99 Pt A 28 51 2016 10.1016/j.addr.2015.09.012
    [Google Scholar]
  61. Fu Z. Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int. J. Mol. Sci. 2020 21 23 9123 10.3390/ijms21239123 33266216
    [Google Scholar]
  62. Argenziano M. Arpicco S. Brusa P. Developing actively targeted nanoparticles to fight cancer: Focus on italian research. Pharmaceutics 2021 13 10 1538 10.3390/pharmaceutics13101538 34683830
    [Google Scholar]
  63. Raju G.S.R. Pavitra E. Varaprasad G.L. Nanoparticles mediated tumor microenvironment modulation: Current advances and applications. J. Nanobiotechnology 2022 20 1 274 10.1186/s12951‑022‑01476‑9 35701781
    [Google Scholar]
  64. Malik S. Muhammad K. Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023 28 18 6624 10.3390/molecules28186624 37764400
    [Google Scholar]
  65. Jang J.H. Lee T.J. Mechanisms of phytochemicals in anti-inflammatory and anti-cancer. Int. J. Mol. Sci. 2023 24 9 7863 10.3390/ijms24097863 37175569
    [Google Scholar]
  66. Choudhari A.S. Mandave P.C. Deshpande M. Ranjekar P. Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020 10 1614 10.3389/fphar.2019.01614 32116665
    [Google Scholar]
  67. Sardar M.S. Kashinath K.P. Gupta U. Roy S. Kaity S. Polymeric nanotheranostics for solid tumor management: Recent developments and global regulatory landscape. Polym. Adv. Technol. 2024 35 6 e6461 10.1002/pat.6461
    [Google Scholar]
  68. Pulingam T. Foroozandeh P. Chuah J.A. Sudesh K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials 2022 12 3 576 10.3390/nano12030576
    [Google Scholar]
  69. Moorthi C. Kathiresan K. Fabrication of dual drug loaded polymeric nanosuspension: Incorporating analytical hierarchy process and data envelopment analysis in the selection of a suitable method. Int. J. Pharm. Pharm. Sci. 2013 5 499 504
    [Google Scholar]
  70. Mora-Huertas C.E. Fessi H. Elaissari A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010 385 1-2 113 142 10.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  71. Ding S. Serra C.A. Vandamme T.F. Yu W. Anton N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J. Control. Release 2019 295 31 49 10.1016/j.jconrel.2018.12.037 30579983
    [Google Scholar]
  72. Goodarzi F. Zendehboudi S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Can. J. Chem. Eng. 2019 97 1 281 309 10.1002/cjce.23336
    [Google Scholar]
  73. Aubry J. Ganachaud F. Cohen Addad J.P. Cabane B. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir 2009 25 4 1970 1979 10.1021/la803000e 19170510
    [Google Scholar]
  74. Lepeltier E. Bourgaux C. Couvreur P. Nanoprecipitation and the “Ouzo effect”: Application to drug delivery devices. Adv. Drug Deliv. Rev. 2014 71 86 97 10.1016/j.addr.2013.12.009 24384372
    [Google Scholar]
  75. Vauthier C. Dubernet C. Fattal E. Pinto-Alphandary H. Couvreur P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev. 2003 55 4 519 548 10.1016/S0169‑409X(03)00041‑3 12706049
    [Google Scholar]
  76. Mishra B. Patel B.B. Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 2010 6 1 9 24 10.1016/j.nano.2009.04.008 19447208
    [Google Scholar]
  77. Shi W. Zhang Z. Yuan Y. Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2013 33 5 754 758 10.1007/s11596‑013‑1192‑x 24142732
    [Google Scholar]
  78. Lebouille J.G.J.L. Stepanyan R. Slot J.J.M. Cohen Stuart M.A. Tuinier R. Nanoprecipitation of polymers in a bad solvent. Colloids Surf. A Physicochem. Eng. Asp. 2014 460 225 235 10.1016/j.colsurfa.2013.11.045
    [Google Scholar]
  79. Sah E. Sah H. Recent trends in preparation of poly(lactide- co -glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J. Nanomater. 2015 2015 1 794601 10.1155/2015/794601
    [Google Scholar]
  80. Sharma N. Madan P. Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian Journal of Pharmaceutical Sciences 2016 11 3 404 416 10.1016/j.ajps.2015.09.004
    [Google Scholar]
  81. Anton N. Benoit J.P. Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—A review. J. Control. Release 2008 128 3 185 199 10.1016/j.jconrel.2008.02.007 18374443
    [Google Scholar]
  82. Pal S.L. Jana U. Manna P.K. Mohanta G.P. Manavalan R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm. Sci. 2011 1 228 234
    [Google Scholar]
  83. Goyal A.K. Garg T. Bhandari S. Rath G. Advancement in pulmonary drug delivery systems for treatment of tuberculosis. Nanostructures for Drug Delivery. Amsterdam, The Netherlands Elsevier 2017 669 695 10.1016/B978‑0‑323‑46143‑6.00022‑1
    [Google Scholar]
  84. Wang J. Shi A. Agyei D. Wang Q. Formulation of water-in-oil-in-water (W/O/W) emulsions containing trans-resveratrol. RSC Advances 2017 7 57 35917 35927 10.1039/C7RA05945K
    [Google Scholar]
  85. Mendoza-Munoz N. Alcala-Alcala S. Quintanar-Guerrero D. Preparation of polymer nanoparticles by the emulsification- solvent evaporation method: From Vanderhoff’s pioneer approach to recent adaptations. Polymer Nanoparticles for Nanomedicines. Cham, Switzerland Springer 2016 87 121 10.1007/978‑3‑319‑41421‑8_4
    [Google Scholar]
  86. Rosca I.D. Watari F. Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J. Control. Release 2004 99 2 271 280 10.1016/j.jconrel.2004.07.007 15380636
    [Google Scholar]
  87. Leroux J.C. Allemann E. Doelker E. Gurny R. New approach for the preparation of nanoparticles by an emulsification-diffusion method. Eur. J. Pharm. Biopharm. 1995 41 1 14 18 10.3390/nano6020026 28344283
    [Google Scholar]
  88. Leroux J.C. Allemann E. De Jaeghere F. Doelker E. Gurny R. Biodegradable nanoparticles –From sustained release formulations to improved site-specific drug delivery. J. Control. Release 1996 39 2 339 350 10.1155/2015/794601
    [Google Scholar]
  89. Ben David-Naim M. Grad E. Aizik G. Polymeric nanoparticles of siRNA prepared by a double-emulsion solvent-diffusion technique: Physicochemical properties, toxicity, biodistribution and efficacy in a mammary carcinoma mice model. Biomaterials 2017 145 154 167 10.1016/j.biomaterials.2017.08.036 28863309
    [Google Scholar]
  90. Haque S. Boyd B.J. McIntosh M.P. Pouton C.W. Kaminskas L.M. Whittaker M. Suggested procedures for the reproducible synthesis of Poly(d,l-lactideco-glycolide) nanoparticles using the emulsification solvent diffusion platform. Curr. Nanosci. 2018 14 5 448 453 10.2174/1573413714666180313130235 30532669
    [Google Scholar]
  91. Quintanar-Guerrero D. Allémann E. Doelker E. Fessi H. A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique. Colloid Polym. Sci. 1997 275 7 640 647 10.1007/s003960050130
    [Google Scholar]
  92. Nagavarma B. Yadav H.K. Ayaz A. Vasudha L. Shivakumar H. Different techniques for preparation of polymeric nanoparticles-A review. Asian J. Pharm. Clin. Res. 2012 5 16 23
    [Google Scholar]
  93. Fonseca A.C. Ferreira P. Cordeiro R.A. Drug Delivery Systems for Predictive Medicine: Polymers as Tools for Advanced Applications. New Strategies to Advance Pre/Diabetes Care: Integrative Approach by PPPM. Dordrecht, The Netherlands Springer 2013 399 455 10.1007/978‑94‑007‑5971‑8_16
    [Google Scholar]
  94. Fujii T. Kawasaki S. Salting-out effects on vanillin extraction by supercritical carbon dioxide from aqueous vanillin solution containing salts. J. Supercrit. Fluids 2019 152 104550 10.1016/j.supflu.2019.104550
    [Google Scholar]
  95. De A. Bose R. Kumar A. Mozumdar S. Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. Cham, Switzerland Springer 2014 10.1007/978‑81‑322‑1689‑6
    [Google Scholar]
  96. Li T. Ma L. Sun D. Purification of lactoperoxidase from bovine milk by integrating the technique of salting-out extraction with cation exchange chromatographic separation. J. Food Meas. Charact. 2019 13 2 1400 1410 10.1007/s11694‑019‑00056‑0
    [Google Scholar]
  97. Eley J.G. Pujari V.D. McLane J. Poly (lactide-co-glycolide) nanoparticles containing coumarin-6 for suppository delivery: In vitro release profile and in vivo tissue distribution. Drug Deliv. 2004 11 4 255 261 10.1080/10717540490467384 15371107
    [Google Scholar]
  98. Niknafs M. Kaviani R. Gharekhani A. Jouyban A. Shayanfar A. Salting-out liquid–liquid microextraction to the determination of mycophenolic acid in plasma samples. Chem. Pap. 2020 74 5 1663 1668 10.1007/s11696‑019‑01018‑y
    [Google Scholar]
  99. Shaik M. Shivanna D.K. Kamate M. Ab V. Tp K.V. Single lysis‐salting out method of genomic DNA extraction from dried blood spots. J. Clin. Lab. Anal. 2016 30 6 1009 1012 10.1002/jcla.21972 27074880
    [Google Scholar]
  100. Fan Y. Wang Y. Fan Y. Ma J. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int. J. Pharm. 2006 324 2 158 167 10.1016/j.ijpharm.2006.05.062 16814967
    [Google Scholar]
  101. Lim K. Hamid Z.A. Polymer nanoparticle carriers in drug delivery systems: Research trend. Applications of Nanocomposite Materials in Drug Delivery. Amsterdam, The Netherlands Elsevier 2018 217 237 10.1016/B978‑0‑12‑813741‑3.00010‑8
    [Google Scholar]
  102. Hyde A.M. Zultanski S.L. Waldman J.H. Zhong Y.L. Shevlin M. Peng F. General principles and strategies for salting-out informed by the hofmeister series. Org. Process Res. Dev. 2017 21 9 1355 1370 10.1021/acs.oprd.7b00197
    [Google Scholar]
  103. Valente I.M. Moreira M.M. Neves P. An insight on salting‐out assisted liquid–liquid extraction for phytoanalysis. Phytochem. Anal. 2017 28 4 297 304 10.1002/pca.2676 28124812
    [Google Scholar]
  104. Lovell P.A. Schork F.J. Fundamentals of emulsion polymerization. Biomacromolecules 2020 21 11 4396 4441 10.1021/acs.biomac.0c00769 32543173
    [Google Scholar]
  105. Chern C.S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci. 2006 31 5 443 486 10.1016/j.progpolymsci.2006.02.001
    [Google Scholar]
  106. Verma G. Rajagopalan M.D. Valluru R. Sridhar K.A. Nanoparticles: A novel approach to target tumors. Nano-and Microscale Drug Delivery Systems. Amsterdam, The Netherlands Elsevier 2017 113 129 10.1016/B978‑0‑323‑52727‑9.00007‑8
    [Google Scholar]
  107. Yang Y. Fang Z. Chen X. An overview of pickering emulsions: Solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 2017 8 287 10.3389/fphar.2017.00287 28588490
    [Google Scholar]
  108. Khan M.U. Reddy K.R. Snguanwongchai T. Haque E. Gomes V.G. Polymer brush synthesis on surface modified carbon nanotubes viain situ emulsion polymerization. Colloid Polym. Sci. 2016 294 10 1599 1610 10.1007/s00396‑016‑3922‑7
    [Google Scholar]
  109. Bourgeat-Lami E. França A.J.P.G. Chaparro T.C. Synthesis of polymer/silica hybrid latexes by surfactant-free RAFT-mediated emulsion polymerization. Macromolecules 2016 49 12 4431 4440 10.1021/acs.macromol.6b00737
    [Google Scholar]
  110. Farias-Cepeda L. Herrera-Ordonez J. Estevez M. Luna-Barcenas G. Rosales-Marines L. New Insights on surfactant-free styrene emulsion polymerization in The presence of sodium styrene sulfonate. Colloid Polym. Sci. 2016 294 10 1571 1576 10.1007/s00396‑016‑3917‑4
    [Google Scholar]
  111. Kassim S. Zahari S.B. Tahrin R.A.A. Harun N.A. Co-polymerization of methyl methacrylate and styrene via surfactant-free emulsion polymerization, as a potential material for photonic crystal application. AIP Conf Proc 2017 1885 020018 10.1063/1.5002212
    [Google Scholar]
  112. Heo H.J. Park I.J. Lee S.G. Ha J.W. Lee S.B. Sohn E.H. Surfactant-free preparation of poly(vinylidene fluoride) nanoparticle dispersions and their use as surface coating agents. Green Chem. 2018 20 2 502 505 10.1039/C7GC02719B
    [Google Scholar]
  113. Ponzio R.A. Marcato Y.L. Gómez M.L. Waiman C.V. Chesta C.A. Palacios R.E. Crosslinked polymer nanoparticles containing single conjugated polymer chains. Methods Appl. Fluoresc. 2017 5 2 024001 10.1088/2050‑6120/aa6405 28352000
    [Google Scholar]
  114. Ghayempour S. Montazer M. A modified microemulsion method for fabrication of hydrogel Tragacanth nanofibers. Int. J. Biol. Macromol. 2018 115 317 323 10.1016/j.ijbiomac.2018.04.037 29649534
    [Google Scholar]
  115. Candau F. Anquetil J.Y. New developments in polymerization in bicontinuous microemulsions. Micelles, Microemulsions, and Monolayers. Oxfordshire, UK Routledge 2018 193 213 10.1201/9780203747339‑8
    [Google Scholar]
  116. Puig J.E. Rabelero M. Semicontinuous microemulsion polymerization. Curr. Opin. Colloid Interface Sci. 2016 25 83 88 10.1016/j.cocis.2016.07.003
    [Google Scholar]
  117. Sarov Y. Capek I. Kinetic events of (micro)emulsion polymerization of styrene. Polym. Bull. 2020 77 9 4851 4865 10.1007/s00289‑019‑02976‑9
    [Google Scholar]
  118. Kedzior S.A. Marway H.S. Cranston E.D. Tailoring cellulose nanocrystal and surfactant behavior in miniemulsion polymerization. Macromolecules 2017 50 7 2645 2655 10.1021/acs.macromol.7b00516
    [Google Scholar]
  119. Nauman N. Zaquen N. Junkers T. Boyer C. Zetterlund P.B. Particle size control in miniemulsion polymerization via membrane emulsification. Macromolecules 2019 52 12 4492 4499 10.1021/acs.macromol.9b00447
    [Google Scholar]
  120. Li W.S.J. Negrell C. Ladmiral V. Cardanol-based polymer latex by radical aqueous miniemulsion polymerization. Polym. Chem. 2018 9 18 2468 2477 10.1039/C8PY00167G
    [Google Scholar]
  121. Zielińska A. Carreiró F. Oliveira A.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  122. Shree D. Patra C.N. Sahoo B.M. Fabrication and applications of polymeric nanoparticles for herbal drug delivery and targeting. Curr. Tradit. Med. 2023 9 5 e180822207632 10.2174/2215083808666220818112031
    [Google Scholar]
  123. Chavda V.P. Patel A.B. Mistry K.J. Nano-drug delivery systems entrapping natural bioactive compounds for cancer: Recent progress and future challenges. Front. Oncol. 2022 12 867655 10.3389/fonc.2022.867655 35425710
    [Google Scholar]
  124. Zeng L. Yan J. Luo L. Ma M. Zhu H. Preparation and characterization of (−)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci. Rep. 2017 7 1 45521 10.1038/srep45521 28349962
    [Google Scholar]
  125. Oerlemans C. Bult W. Bos M. Storm G. Nijsen J.F.W. Hennink W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res. 2010 27 12 2569 2589 10.1007/s11095‑010‑0233‑4 20725771
    [Google Scholar]
  126. Zhang Y. Huang Y. Li S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014 15 4 862 871 10.1208/s12249‑014‑0113‑z 24700296
    [Google Scholar]
  127. Wong K.H. Lu A. Chen X. Yang Z. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules 2020 25 16 3620 10.3390/molecules25163620 32784890
    [Google Scholar]
  128. Hrkach J. Von Hoff D. Ali M.M. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 2012 4 128 128ra39 10.1126/scitranslmed.3003651 22491949
    [Google Scholar]
  129. Xiao X. Teng F. Shi C. Polymeric nanoparticles—Promising carriers for cancer therapy. Front. Bioeng. Biotechnol. 2022 10 1024143 10.3389/fbioe.2022.1024143 36277396
    [Google Scholar]
  130. Junnuthula V. Kolimi P. Nyavanandi D. Sampathi S. Vora L.K. Dyawanapelly S. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations. Pharmaceutics 2022 14 9 1860 10.3390/pharmaceutics14091860 36145608
    [Google Scholar]
  131. Gregoriou Y. Gregoriou G. Yilmaz V. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics 2021 5 1 113 124 10.7150/ntno.51955 33391978
    [Google Scholar]
  132. Christian D.A. Cai S. Bowen D.M. Kim Y. Pajerowski J.D. Discher D.E. Polymersome carriers: From self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm. 2009 71 3 463 474 10.1016/j.ejpb.2008.09.025 18977437
    [Google Scholar]
  133. Kim Y. Tewari M. Pajerowski J.D. Polymersome delivery of siRNA and antisense oligonucleotides. J. Control. Release 2009 134 2 132 140 10.1016/j.jconrel.2008.10.020 19084037
    [Google Scholar]
  134. Pangburn T.O. Georgiou K. Bates F.S. Kokkoli E. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. Langmuir 2012 28 35 12816 12830 10.1021/la300874z 22827285
    [Google Scholar]
  135. Chandrawati R. Caruso F. Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 2012 28 39 13798 13807 10.1021/la301958v 22831559
    [Google Scholar]
  136. Negut I. Bita B. Polymersomes as innovative, stimuli-responsive platforms for cancer therapy. Pharmaceutics 2024 16 4 463 10.3390/pharmaceutics16040463 38675124
    [Google Scholar]
  137. Porta F. Ehrsam D. Lengerke C. Meyer Zu Schwabedissen H.E. Synthesis and characterization of PDMS-PMOXA-based polymersomes sensitive to MMP-9 for application in breast cancer. Mol. Pharm. 2018 15 11 4884 4897 10.1039/D1CS00686J 34762084
    [Google Scholar]
  138. Elmowafy M. Shalaby K. Elkomy M.H. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers 2023 15 5 1123 10.3390/polym15051123 36904364
    [Google Scholar]
  139. Fatima M. Sheikh A. Abourehab M.A.S. Kesharwani P. Advancements in polymeric nanocarriers to mediate targeted therapy against triple-negative breast cancer. Pharmaceutics 2022 14 11 2432 10.3390/pharmaceutics14112432 36365249
    [Google Scholar]
  140. Markeb A.A. El-Maali N.A. Sayed D.M. Synthesis, structural characterization, and preclinical efficacy of a novel paclitaxel-loaded alginate Nanoparticle for breast cancer treatment. Int. J. Breast Cancer 2016 2016 1 8 10.1155/2016/7549372 27660726
    [Google Scholar]
  141. Ahmad R. Kaus N.H.M. Hamid S. Synthesis and characterization of PLGAPEG thymoquinone nanoparticles and its cytotoxicity effects in tamoxifen-resistant breast cancer cells. Adv. Exp. Med. Biol. 2018 1292 65 82 10.1007/5584_2018_302 30560443
    [Google Scholar]
  142. I El-Gogary R Gaber SAA, Nasr M. Polymeric nanocapsular baicalin: Chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines. Sci. Rep. 2019 9 1 11064 10.1038/s41598‑019‑47586‑7 31363132
    [Google Scholar]
  143. Esfandiarpour-Boroujeni S. Bagheri-Khoulenjani S. Mirzadeh H. Amanpour S. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr. Polym. 2017 168 14 21 10.1016/j.carbpol.2017.03.031 28457434
    [Google Scholar]
  144. Cerqueira B.B.S. Lasham A. Shelling A.N. Al-Kassas R. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater. Sci. Eng. C 2017 76 593 600 10.1016/j.msec.2017.03.121 28482569
    [Google Scholar]
  145. Chen J. Li S. Shen Q. He H. Zhang Y. Enhanced cellular uptake of folic acid–conjugated PLGA–PEG nanoparticles loaded with vincristine sulfate in human breast cancer. Drug Dev. Ind. Pharm. 2011 37 11 1339 1346 10.3109/03639045.2011.575162 21524153
    [Google Scholar]
  146. Soni P. Kaur J. Tikoo K. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy. J. Nanopart. Res. 2015 17 1 18 10.1007/s11051‑014‑2821‑4
    [Google Scholar]
  147. Tang X. Cai S. Zhang R. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment. Nanoscale Res. Lett. 2013 8 1 420 10.1186/1556‑276X‑8‑420 24134303
    [Google Scholar]
  148. Davarnejad R. Layeghy K. Soleymani M. Ayazi A. Encapsulation of quercetin in tri-block- copolymer/tween 80 mixed nanomicelles to enhance its cytotoxicity against breast cancer cells. Preprint 2021 10.21203/rs.3.rs‑1075658/v1
    [Google Scholar]
  149. Zhang M. Ying N. Chen J. Engineering a pH-responsive polymeric micelle coloaded with paclitaxel and tretinoin for breast cancer therapy. Preprint 2023 10.21203/rs.3.rs‑3608767/v1
    [Google Scholar]
  150. Sun Y. Bai Y. Liu S. Cui S. Xu P. Thermosensitive micelles gel to deliver quercetin locally for enhanced antibreast cancer efficacy: An in vitro evaluation. IET Nanobiotechnol. 2023 2023 1 9 10.1049/2023/7971492 38863476
    [Google Scholar]
  151. Zeighamian V. Darabi M. Akbarzadeh A. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells. Artif. Cells Nanomed. Biotechnol. 2016 44 2 735 742 10.3109/21691401.2014.982803 25819738
    [Google Scholar]
  152. Aukunuru J. Thadakapally R. Aafreen A. Habibuddin M. Jogala S. Preparation and characterization of PEG-albumin-curcumin nanoparticles intended to treat breast cancer. Indian J. Pharm. Sci. 2016 78 1 65 72 10.4103/0250‑474X.180250 27168683
    [Google Scholar]
  153. Yi S. Wang Y. Huang Y. Tea nanoparticles for immunostimulation and chemo-drug delivery in cancer treatment. J. Biomed. Nanotechnol. 2014 10 6 1016 1029 10.1166/jbn.2014.1782 24749396
    [Google Scholar]
  154. Minaei A. Sabzichi M. Ramezani F. Hamishehkar H. Samadi N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep. 2016 43 2 99 105 10.1007/s11033‑016‑3942‑x 26748999
    [Google Scholar]
  155. Kazi J. Sen R. Ganguly S. Jha T. Ganguly S. Chatterjee Debnath M. Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. Int. J. Pharm. 2020 585 119449 10.1016/j.ijpharm.2020.119449 32464231
    [Google Scholar]
  156. Halder A. Jethwa M. Mukherjee P. Lactoferrin-tethered betulinic acid nanoparticles promote rapid delivery and cell death in triple negative breast and laryngeal cancer cells. Artif. Cells Nanomed. Biotechnol. 2020 48 1 1362 1371 10.1080/21691401.2020.1850465 33284038
    [Google Scholar]
  157. Kizhakkanoodan K.S. Rallapalli Y. Praveena J. Acharya S. Guru B.R. Cancer nanomedicine: Emergence, expansion, and expectations. SN Applied Sciences 2023 5 12 385 10.1007/s42452‑023‑05593‑4
    [Google Scholar]
  158. Lampelj M. Arko D. Cas-Sikosek N. Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) in breast cancer - Correlation with traditional prognostic factors. Radiol. Oncol. 2015 49 4 357 364 10.2478/raon‑2014‑0049 26834522
    [Google Scholar]
  159. Zhou Y. Chen D. Xue G. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Advances 2020 10 57 34517 34526 10.1039/D0RA04231E 35514369
    [Google Scholar]
  160. Christiaens V. Lijnen H.R. Angiogenesis and development of adipose tissue. Mol. Cell. Endocrinol. 2010 318 1-2 2 9 10.1016/j.mce.2009.08.006 19686803
    [Google Scholar]
  161. Yoshida S. Ono M. Shono T. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol. Cell. Biol. 1997 17 7 4015 4023 10.1128/MCB.17.7.4015 9199336
    [Google Scholar]
  162. Jalali A. Dabaghian F. Zarshenas M.M. Alkaloids of Peganum harmala: Anticancer biomarkers with promising outcomes. Curr. Pharm. Des. 2021 27 2 185 196 10.2174/18734286MTExhODEu4 33238864
    [Google Scholar]
  163. Homayouni Tabrizi M. Fabrication of folic acid-conjugated chitosan-coated PLGA nanoparticles for targeted delivery of Peganum harmala smoke extract to breast cancer cells. Nanotechnology 2022 33 49 495101 10.1088/1361‑6528/ac8e0a 36121718
    [Google Scholar]
  164. Tang S.M. Deng X.T. Zhou J. Li Q.P. Ge X.X. Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 2020 121 109604 10.1016/j.biopha.2019.109604 31733570
    [Google Scholar]
  165. Reyes-Farias M. Carrasco-Pozo C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci. 2019 20 13 3177 10.3390/ijms20133177 31261749
    [Google Scholar]
  166. Aggarwal V. Tuli H.S. Tania M. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and avancement. Semin. Cancer Biol. 2022 80 256 275 10.1016/j.semcancer.2020.05.011 32461153
    [Google Scholar]
  167. Cavalcante de Freitas P.G. Rodrigues Arruda B. Araújo Mendes M.G. Resveratrol-loaded polymeric nanoparticles: The effects of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on physicochemical and biological properties against breast cancer in vitro and in vivo. Cancers 2023 15 10 2802 10.3390/cancers15102802 37345140
    [Google Scholar]
  168. Charafe-Jauffret E. Ginestier C. Iovino F. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin. Cancer Res. 2010 16 1 45 55 10.1158/1078‑0432.CCR‑09‑1630 20028757
    [Google Scholar]
  169. Fultang N. Chakraborty M. Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. Cancer Drug Resist. 2021 4 2 321 342 10.20517/cdr.2020.106 35582030
    [Google Scholar]
  170. Singh P. Sahoo S.K. Piperlongumine loaded PLGA nanoparticles inhibit cancer stem-like cells through modulation of STAT3 in mammosphere model of triple negative breast cancer. Int. J. Pharm. 2022 616 121526 10.1016/j.ijpharm.2022.121526 35104598
    [Google Scholar]
  171. Parveen S. Gupta P. Kumar S. Banerjee M. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Medicine in Drug Discovery 2023 20 100165 10.1016/j.medidd.2023.100165
    [Google Scholar]
  172. Mohanty A. Uthaman S. Park I.K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules 2020 25 19 4377 10.3390/molecules25194377 32977707
    [Google Scholar]
  173. Sivadasan D. Sultan M.H. Madkhali O. Almoshari Y. Thangavel N. Polymeric lipid hybrid nanoparticles (PLNs) as emerging drug delivery platform-A comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics 2021 13 8 1291 10.3390/pharmaceutics13081291 34452251
    [Google Scholar]
  174. Tahir N. Madni A. Correia A. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int. J. Nanomedicine 2019 14 4961 4974 10.2147/IJN.S209325 31308666
    [Google Scholar]
  175. Krishnamurthy S. Vaiyapuri R. Zhang L. Chan J.M. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater. Sci. 2015 3 7 923 936 10.1039/C4BM00427B 26221931
    [Google Scholar]
  176. Wala K. Szlasa W. Sauer N. Anticancer efficacy of 6-gingerol with paclitaxel against wild type of human breast adenocarcinoma. Molecules 2022 27 9 2693 10.3390/molecules27092693 35566044
    [Google Scholar]
  177. Zhang Z. Xu S. Wang Y. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci. 2018 509 47 57 10.1016/j.jcis.2017.08.097 28881205
    [Google Scholar]
  178. Park I.H. Sohn J.H. Kim S.B. An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor EL-based paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res. Treat. 2017 49 3 569 577 10.4143/crt.2016.289 27618821
    [Google Scholar]
  179. Gradishar W.J. Tjulandin S. Davidson N. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005 23 31 7794 7803 10.1200/JCO.2005.04.937 16172456
    [Google Scholar]
  180. Subramanian S. Prasanna R. Biswas G. Nanosomal docetaxel lipid suspension-based chemotherapy in breast cancer: Results from a multicenter retrospective study. Breast Cancer 2020 12 77 85 10.2147/BCTT.S236108 32547188
    [Google Scholar]
  181. A bioequivalence study of vinorelbine tartrate injectable emulsion in patients with advanced cancer. 2012 Available from: https://clinicaltrials.gov/ct2/show/NCT00432562?term=NCT00432562&draw=2&rank=1
  182. Zhao J. Castranova V. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B Crit. Rev. 2011 14 8 593 632 10.1080/10937404.2011.615113 22008094
    [Google Scholar]
  183. Satalkar P. Elger B.S. Hunziker P. Shaw D. Challenges of clinical translation in nanomedicine: A qualitative study. Nanomedicine 2016 12 4 893 900 10.1016/j.nano.2015.12.376 26772431
    [Google Scholar]
  184. Resnik D.B. Tinkle S.S. Ethical issues in clinical trials involving nanomedicine. Contemp. Clin. Trials 2007 28 4 433 441 10.1016/j.cct.2006.11.001 17166777
    [Google Scholar]
  185. Wagner V. Dullaart A. Bock A.K. Zweck A. The emerging nanomedicine landscape. Nat. Biotechnol. 2006 24 10 1211 1217 10.1038/nbt1006‑1211 17033654
    [Google Scholar]
  186. Etheridge M.L. Campbell S.A. Erdman A.G. Haynes C.L. Wolf S.M. McCullough J. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine 2013 9 1 1 14 10.1016/j.nano.2012.05.013 22684017
    [Google Scholar]
  187. Piktel E. Niemirowicz K. Wątek M. Wollny T. Deptuła P. Bucki R. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J. Nanobiotechnology 2016 14 1 39 10.1186/s12951‑016‑0193‑x 27229857
    [Google Scholar]
  188. Al-Hajeili M. Azmi A.S. Choi M. Nab-paclitaxel: Potential for the treatment of advanced pancreatic cancer. OncoTargets Ther. 2014 7 187 192 24523592
    [Google Scholar]
  189. Martín M. nab-Paclitaxel dose and schedule in breast cancer. Breast Cancer Res. 2015 17 1 81 10.1186/s13058‑015‑0587‑y 26067995
    [Google Scholar]
  190. Yamamoto Y. Kawano I. Iwase H. Nab-paclitaxel for the treatment of breast cancer: Efficacy, safety, and approval. OncoTargets Ther. 2011 4 123 136 10.2147/OTT.S13836 21792318
    [Google Scholar]
  191. Gales B.J. Erstad B.L. Adverse reactions to human serum albumin. Ann. Pharmacother. 1993 27 1 87 94 10.1177/106002809302700119 8431628
    [Google Scholar]
  192. Su H. Wang Y. Gu Y. Bowman L. Zhao J. Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J. Appl. Toxicol. 2018 38 1 3 24 10.1002/jat.3476 28589558
    [Google Scholar]
  193. Ramachandran G. Howard J. Maynard A. Philbert M. Handling worker and third-party exposures to nanotherapeutics during clinical trials. J. Law Med. Ethics 2012 40 4 856 864 10.1111/j.1748‑720X.2012.00714.x 23289688
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615358250250709130728
Loading
/content/journals/cnm/10.2174/0124054615358250250709130728
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test