Skip to content
2000
image of Harnessing Nanoparticles for Effective Drug Delivery: A Comprehensive Review of Techniques and Therapeutic Applications

Abstract

The current scenario of research is moving from the nanosized scale. This research posits that nanoparticle-based drug delivery systems can significantly enhance the therapeutic efficacy and bioavailability of poorly water-soluble drugs, thereby addressing critical challenges in the treatment of various diseases, including cancer, diabetes, and dermatological conditions.

In this study, a comprehensive review of various nanoformulation techniques was conducted, including nanoemulsions, lipid-based formulations, and polymeric nanoparticles. The study involved analyzing existing literature on the preparation methods, characterization, and optimization of nanoparticles for drug delivery. Additionally, case studies of approved and clinical trial drugs utilizing nanoparticle carriers were examined to assess their impact on bioavailability and therapeutic outcomes.

The findings indicate that nanoparticle formulations not only improve the solubility and stability of hydrophobic drugs but also facilitate targeted delivery, resulting in enhanced therapeutic effects and reduced side effects. Specific examples highlighted include the successful application of nanoparticles in gene therapy and oncology, demonstrating their potential to revolutionize treatment paradigms. By reviewing this article, the reviewer gets knowledge about the different array of tools, methods, and development achieved in the field of nanotechnology, and the article represents the sufficient information needed to achieve the best design of nanoformulation for drug development and bridge the gaps faced by researchers and the scientific community.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615351522250307173107
2025-04-08
2025-09-28
Loading full text...

Full text loading...

References

  1. Feng C. Li Y. Ferdows B.E. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm. Sin. B 2022 12 5 2206 2223 10.1016/j.apsb.2021.12.021 35013704
    [Google Scholar]
  2. Sindhu R.K. Gupta R. Wadhera G. Kumar P. Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022 8 2 97 10.3390/gels8020097 35200478
    [Google Scholar]
  3. Patel R. Kaki M. Potluri V.S. Kahar P. Khanna D. A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. Hum. Vaccin. Immunother. 2022 18 1 2002083 10.1080/21645515.2021.2002083 35130825
    [Google Scholar]
  4. Costanzo M. De Giglio M.A.R. Roviello G.N. Anti-coronavirus vaccines: Past investigations on SARS-COV-1 and MERS-COV, the approved vaccines from Biontech/Pfizer, Moderna, Oxford/AstraZeneca, and others under development against SARSCOV-2 infection. Curr. Med. Chem. 2022 29 1 4 18 10.2174/1875533XMTE1eNzEw5 34355678
    [Google Scholar]
  5. Amidon G.L. Lennernäs H. Shah V.P. Crison J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995 12 3 413 420 10.1023/A:1016212804288 7617530
    [Google Scholar]
  6. Rezzani R. Rodella L.F. Fraschini F. Melatonin delivery in solid lipid nanoparticles: Prevention of cyclosporine A induced cardiac damage. J. Pineal Res. 2009 46 3 255 261 10.1111/j.1600‑079X.2008.00651.x 19196438
    [Google Scholar]
  7. Sarker S. Ali M.A. Barman R.K. Preparation and antidiabetic effect of orally administered nifedipine‐loaded solid lipid nanoparticles in fructose-induced diabetic rats. Pharmacol. Pharm. 2018 9 10 457 471 10.4236/pp.2018.910035
    [Google Scholar]
  8. Hastedt J.E. Bäckman P. Cabal A. iBCS: 1. Principles and framework of an inhalation-based biopharmaceutics classification system. Mol. Pharm. 2022 19 7 2032 2039 10.1021/acs.molpharmaceut.2c00113 35576168
    [Google Scholar]
  9. Ogawa Y. Yamamoto M. Okada H. Yashiki T. Shimamoto T. A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly(lactic/glycolic) acid. Chem. Pharm. Bull. (Tokyo) 1988 36 3 1095 1103 10.1248/cpb.36.1095 3136939
    [Google Scholar]
  10. Piwowarczyk L. Kucinska M. Tomczak S. Liposomal nanoformulation as a carrier for curcumin and pegcg—study on stability and anticancer potential. Nanomaterials (Basel) 2022 12 8 1274 10.3390/nano12081274 35457986
    [Google Scholar]
  11. Langer K. Balthasar S. Vogel V. Dinauer N. von Briesen H. Schubert D. Optimization of the preparation process for Human Serum Albumin (HSA) nanoparticles. Int. J. Pharm. 2003 257 1-2 169 180 10.1016/S0378‑5173(03)00134‑0 12711172
    [Google Scholar]
  12. Visscher G.E. Robison R.L. Maulding H.V. Fong J.W. Pearson J.E. Argentieri G.J. Biodegradation of and tissue reaction to 50:50 poly(DL‐lactide‐co‐glycolide) microcapsules. J. Biomed. Mater. Res. 1985 19 3 349 365 10.1002/jbm.820190315 4077887
    [Google Scholar]
  13. Moorthi C. Krishnan K. Manavalan R. Kathiresan K. Preparation and characterization of curcumin–piperine dual drug loaded nanoparticles. Asian Pac. J. Trop. Biomed. 2012 2 11 841 848 10.1016/S2221‑1691(12)60241‑X 23569859
    [Google Scholar]
  14. Vlachopoulos A. Karlioti G. Balla E. Poly(lactic acid)-based microparticles for drug delivery applications: An overview of recent advances. Pharmaceutics 2022 14 2 359 10.3390/pharmaceutics14020359 35214091
    [Google Scholar]
  15. Bu Y. Ma J. Bei J. Wang S. Surface modification of aliphatic polyester to enhance biocompatibility. Front. Bioeng. Biotechnol. 2019 7 98 10.3389/fbioe.2019.00098 31131273
    [Google Scholar]
  16. Tu M. Wang F. Shen S. Wang H. Feng J. Influences of psychological intervention on negative emotion, cancer-related fatigue and level of hope in lung cancer chemotherapy patients based on the PERMA framework. Iran. J. Public Health 2021 50 4 728 736 10.18502/ijph.v50i4.5997 34183922
    [Google Scholar]
  17. Ng S.Y. Vandamme T. Taylor M.S. Heller J. Synthesis and erosion studies of self-catalyzed poly(ortho ester)s. Macromolecules 1997 30 4 770 772 10.1021/ma9610626
    [Google Scholar]
  18. Sur S. Rathore A. Dave V. Reddy K.R. Chouhan R.S. Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects 2019 20 100397 10.1016/j.nanoso.2019.100397
    [Google Scholar]
  19. Volpatti L.R. Matranga M.A. Cortinas A.B. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano 2020 14 1 488 497 10.1021/acsnano.9b06395 31765558
    [Google Scholar]
  20. Yaswant P Thassu D Drug delivery nanoparticles formulation and characterization. 2009 10.3109/9781420078053
    [Google Scholar]
  21. Chauhan R. Singh B. Singh M.P. Malik A. Pharmacokinetic study of aloin nanoparticulate: Enhanced oral formulation bioavailability. Inter J Phar Qua Assu 2024 15 1 94 100 10.25258/ijpqa.15.1.14
    [Google Scholar]
  22. Chauhan R. Singh B. Dayal R. Malik A.M. Comparison study of aloin-curcumin nanoparticles by taking 2 different ratios and analyses using drug design experimental study. Inter J Drug Deliv Tech 2024 14 3 1377 1383 10.25258/ijddt.14.3.18
    [Google Scholar]
  23. Ashrafi H. Azadi A. Mohammadi-Samani S. Ghasemi Y. Daneshamouz S. Preliminary study for the preparation of fatty acid bioconjugated L-asparaginase micellar nanocarrier as a delivery system for peptide anti-cancer agents. Trends Pharmacol. Sci. 2020 6 3 175 188
    [Google Scholar]
  24. Semyari S. Azizi S. Kundu D. A review of poly butyl cyanoacrylate nanoparticles as a cancer drug delivery and targeting. J Nanostructures 2021 11 4 754 771
    [Google Scholar]
  25. Harwansh R.K. Mishra S. Mazumder R. Deshmukh R. Rahman A. Recent updates on transdermal drug delivery approaches for the management of gout and its clinical perspective. Curr. Pharm. Biotechnol. 2023 25 2 159 178 10.2174/1389201024666230606143827 37282649
    [Google Scholar]
  26. Mendes S. Sá R. Magalhães M. Marques F. Sousa M. Silva E. The role of ROS as a double-edged sword in infertility: The impact of cancer treatment. Cancers (Basel) 2022 14 6 1585 10.3390/cancers14061585 35326736
    [Google Scholar]
  27. Hu J. Sheng Y. Shi J. Yu B. Yu Z. Liao G. Long circulating polymeric nanoparticles for gene/drug delivery. Curr. Drug Metab. 2018 19 9 723 738 10.2174/1389200219666171207120643 29219050
    [Google Scholar]
  28. Cruz M.E.M. Corvo M.L. Martins M.B. Simões S. Gaspar M.M. Liposomes as tools to improve therapeutic enzyme performance. Pharmaceutics 2022 14 3 531 10.3390/pharmaceutics14030531 35335906
    [Google Scholar]
  29. Nanocochleates: A novel drug delivery technology recent-trends-novel-drug-delivery-system 2008; 06 10.1016/j.hybadv.2024.100215
  30. Cheng Y. Xu Z. Ma M. Xu T. Dendrimers as drug carriers: Applications in different routes of drug administration. J. Pharm. Sci. 2008 97 1 123 143 10.1002/jps.21079 17721949
    [Google Scholar]
  31. Anand P. Stahel V.P. The safety of COVID-19 mRNA vaccines: A review. Patient Saf. Surg. 2021 15 1 20 10.1186/s13037‑021‑00291‑9 33933145
    [Google Scholar]
  32. Kazemian P. Yu S.Y. Thomson S.B. Birkenshaw A. Leavitt B.R. Ross C.J.D. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol. Pharm. 2022 19 6 1669 1686 10.1021/acs.molpharmaceut.1c00916 35594500
    [Google Scholar]
  33. Xiong X.Y. Li Y.P. Li Z.L. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J. Control. Release 2007 120 1-2 11 17 10.1016/j.jconrel.2007.04.004 17509718
    [Google Scholar]
  34. Marson D Russi M Laurini E Pricl S. Aquasomes: a novel nanocarrier system for drug delivery. 2023 10.1016/B978‑0‑323‑91668‑4.00010‑1
    [Google Scholar]
  35. Zeshan M. Amjed N. Ashraf H. Farooq A. Akram N. Zia K.M. A review on the application of chitosan-based polymers in liver tissue engineering. Int. J. Biol. Macromol. 2024 262 Pt 1 129350 10.1016/j.ijbiomac.2024.129350 38242400
    [Google Scholar]
  36. Ayom G.E. Malima N.M. Owonubi S.J. Revaprasadu N. Aquasomes: a novel nanocarrier system for drug delivery. Adv Nanoformul 2023 3 289 309 10.1016/B978‑0‑323‑85785‑7.00018‑8
    [Google Scholar]
  37. Liu J. Zhang S.M. Chen P.P. Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J. Mater. Sci. Mater. Med. 2007 18 11 2205 2210 10.1007/s10856‑007‑3010‑0 17668296
    [Google Scholar]
  38. Zhang Q. Shen Z. Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int. J. Pharm. 1995 218 1–2 75 80 10.1016/S0378‑5173(01)00614‑7 11337151
    [Google Scholar]
  39. Damgé C. Maincent P. Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release 2007 117 2 163 170 10.1016/j.jconrel.2006.10.023 17141909
    [Google Scholar]
  40. Yan L.I. Xiangyuan X.I. Research progress of targeted nanocarriers for oral insulin delivery. J Funct Poly 2024 37 1 82 90
    [Google Scholar]
  41. Sarmento B. Ribeiro A. Veiga F. Sampaio P. Neufeld R. Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 2007 24 12 2198 2206 10.1007/s11095‑007‑9367‑4 17577641
    [Google Scholar]
  42. Nicholas J.H. Glen P.L. Scott J.H. Oral nanotherapeutic formulation of insulin with reduced episodes of hypoglycemia. Nat. Nanotechnol. 2024 19 4 534 544 10.1038/s41565‑023‑01565‑2
    [Google Scholar]
  43. Caturano A. Nilo R. Nilo D. Advances in nanomedicine for precision insulin delivery. Pharmaceuticals (Basel) 2024 17 7 945 10.3390/ph17070945 39065795
    [Google Scholar]
  44. Li S. Chen Z. Wang J. Yan L. Chen T. Zeng Q. Fabrication and characterization of a novel semi-interpenetrating network hydrogel based on sodium carboxymethyl cellulose and poly(methacrylic acid) for oral insulin delivery. J. Biomater. Appl. 2020 35 1 3 14 10.1177/0885328220912843 32216507
    [Google Scholar]
  45. Zhang X. Xing J.Z. Chen J. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin. Invest. Med. 2008 31 3 160 10.25011/cim.v31i3.3473 18544279
    [Google Scholar]
  46. Attivi D. Wehrle P. Ubrich N. Damge C. Hoffman M. Maincent P. Formulation of insulin-loaded polymeric nanoparticles using response surface methodology. Drug Dev. Ind. Pharm. 2005 31 2 179 189 10.1081/DDC‑200047802 15773285
    [Google Scholar]
  47. Chalasani K.B. Russell-Jones G.J. Yandrapu S.K. Diwan P.V. Jain S.K. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J. Control. Release 2007 117 3 421 429 10.1016/j.jconrel.2006.12.003 17239471
    [Google Scholar]
  48. Bhumkar D.R. Joshi H.M. Sastry M. Pokharkar V.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res. 2007 24 8 1415 1426 10.1007/s11095‑007‑9257‑9 17380266
    [Google Scholar]
  49. Sudhakar K. Fuloria S. Subramaniyan V. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system. Nanomaterials (Basel) 2021 11 10 2557 10.3390/nano11102557 34685005
    [Google Scholar]
  50. Dadwal A Baldi A Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer 2018 46 sup2 295 305 10.1080/21691401.2018.1457039 30043651
    [Google Scholar]
  51. Assefi M. Ataeinaeini M. Nazari A. A state-of-the-art review on solid lipid nanoparticles as a nanovaccines delivery system. J. Drug Deliv. Sci. Technol. 2023 86 104623 10.1016/j.jddst.2023.104623
    [Google Scholar]
  52. Cevc G. Chopra A. Deformable (Transfersome®) vesicles for improved drug delivery into and through the skin. Percutaneous penetration enhancers chemical methods in penetration enhancement: Nanocarriers. Berlin, Heidelberg Springer 2016 39 59 10.1007/978‑3‑662‑47862‑2_3
    [Google Scholar]
  53. Al-Haideri M. Tondok S.B. Safa S.H. CAR-T cell combination therapy: The next revolution in cancer treatment. Cancer Cell Int. 2022 22 1 365 10.1186/s12935‑022‑02778‑6 36419058
    [Google Scholar]
  54. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  55. Yao Y. Zhou Y. Liu L. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  56. Tran S. DeGiovanni P.J. Piel B. Rai P. Cancer nanomedicine: A creview of recent success in drug delivery. Clin. Transl. Med. 2017 6 1 e44 10.1186/s40169‑017‑0175‑0 29230567
    [Google Scholar]
  57. Touitou E. Dayan N. Bergelson L. Ethosomes – Novel vesicular carriers: Characterization and delivery properties. J. Control. Release 2006 65 403 418 10.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  58. Hyeon T.I. Yoon K.S. Ethosomes containing ceramide as a skin carrier of active ingredients. Curr. Drug Deliv. 2023 20 7 927 942 10.2174/1567201819666220720123737 35864796
    [Google Scholar]
  59. Sauto E.B. Muller R.H. Lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers) for cosmetic, dermal, and transdermal applications. In: Thassu D, Deleers M, Pathak Y, Eds. Nanoparticulate Drug Delivery Systems. New York CRC Press 2007 213 233
    [Google Scholar]
  60. Madan J.R. Khobaragade S. Dua K. Awasthi R. Formulation, optimization, and in vitro evaluation of nanostructured lipid carriers for topical delivery of Apremilast. Dermatol. Ther. 2020 33 3 e13370 10.1111/dth.13370 32250507
    [Google Scholar]
  61. Agrawal Y Petkar KC Sawant KK Development, evaluation and clinical studies of acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. 2010 401 1-2 93 102 10.1016/j.ijpharm.2010.09.007 20858539
    [Google Scholar]
  62. Mohd Nordin U.U. Ahmad N. Salim N. Mohd Yusof N.S. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects. RSC Advances 2021 11 46 29080 29101 10.1039/D1RA06087B 35478537
    [Google Scholar]
  63. Sharma R. Dua J.S. Prasad D.N. Hira S. Monika. Advancement in novel drug delivery system: Niosomes. J. Drug Deliv. Ther. 2019 9 3-s 995 1001 10.22270/jddt.v9i3‑s.2931
    [Google Scholar]
  64. Modi C. Kanada K. Prajapati B. Vaghela S. Chadha H. Transfersomes as transporters via lipid-based drug delivery system. Inlipid-based drug delivery systems. Singapore Jenny Stanford Publishing 2024 185 212 32916782
    [Google Scholar]
  65. Ugur Kaplan A.B. Cetin M. Orgul D. Taghizadehghalehjoughi A. Hacımuftuoglu A. Hekimoglu S. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. J. Drug Deliv. Sci. Technol. 2019 52 189 203 10.1016/j.jddst.2019.04.027
    [Google Scholar]
  66. Liu P. Chen G. Zhang J. A Review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  67. Chiu C.S. Huang P.H. Chan Y.J. Li P.H. Lu W.C. d-limonene nanoemulsion as skin permeation enhancer for curcumin prepared by ultrasonic emulsification. J Agric Food Res 2024 15 100932 10.1016/j.jafr.2023.100932
    [Google Scholar]
  68. Manikkath J. Hegde A.R. Kalthur G. Parekh H.S. Mutalik S. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int. J. Pharm. 2017 521 1-2 110 119 10.1016/j.ijpharm.2017.02.002 28163223
    [Google Scholar]
  69. Kitchens K. Elsayed M. Ghandehari H. Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Adv. Drug Deliv. Rev. 2005 57 15 2163 2176 10.1016/j.addr.2005.09.013 16289433
    [Google Scholar]
  70. Jain K.K. An overview of drug delivery systems. Methods Mol. Biol. 2020 2059 1 54 10.1007/978‑1‑4939‑9798‑5_1 31435914
    [Google Scholar]
  71. Gupta N. Gupta G.D. Singh D. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects. Front Nanotechnol 2022 4 1006628 10.3389/fnano.2022.1006628
    [Google Scholar]
  72. Burish T.G. Tope D.M. Psychological techniques for controlling the adverse side effects of cancer chemotherapy: Findings from a decade of research. J. Pain Symptom Manage. 1992 7 5 287 301 10.1016/0885‑3924(92)90062‑M 1624814
    [Google Scholar]
  73. Schwartz C.L. Late effects of treatment in long-term survivors of cancer. Cancer Treat. Rev. 1995 21 4 355 366 10.1016/0305‑7372(95)90037‑3 7585660
    [Google Scholar]
  74. Tormey D.C. Gray R. Taylor S.G. Postoperative chemotherapy and chemo-hormonal therapy in women with node-positive breast cancer. Natl. Cancer Inst. Monogr. 1986 1 75 80
    [Google Scholar]
  75. Bae K.H. Lee Y. Park T.G. Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 2007 8 2 650 656 10.1021/bm0608939 17291088
    [Google Scholar]
  76. Kianfar E. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnology 2021 19 1 159 10.1186/s12951‑021‑00896‑3 34051806
    [Google Scholar]
  77. Namiot E.D. Sokolov A.V. Chubarev V.N. Tarasov V.V. Schiöth H.B. Nanoparticles in clinical trials: Analysis of clinical trials, FDA approvals and use for covid-19 vaccines. Int. J. Mol. Sci. 2023 24 1 787 10.3390/ijms24010787 36614230
    [Google Scholar]
  78. Sonavane G. Tomoda K. Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B Biointerfaces 2008 66 2 274 280 10.1016/j.colsurfb.2008.07.004 18722754
    [Google Scholar]
  79. Elsayed I. Huang X. Elsayed M. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006 239 1 129 135 10.1016/j.canlet.2005.07.035 16198049
    [Google Scholar]
  80. Noh S.M. Kim W.K. Kim S.J. Kim J.M. Baek K.H. Oh Y.K. Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles. Biochim. Biophys. Acta, Gen. Subj. 2007 1770 5 747 752 10.1016/j.bbagen.2007.01.012 17324519
    [Google Scholar]
  81. Weiner N. Lieb L. Niemiec S. Ramachandran C. Hu Z. Egbaria K. Liposomes: A novel topical delivery system for pharmaceutical and cosmetic applications. J. Drug Target. 1994 2 5 405 410 10.3109/10611869408996816 7704485
    [Google Scholar]
  82. Vihola H. Laukkanen A. Tenhu H. Hirvonen J. Drug release characteristics of physically cross‐linked thermosensitive poly(N‐vinylcaprolactam) hydrogel particles. J. Pharm. Sci. 2008 97 11 4783 4793 10.1002/jps.21348 18306245
    [Google Scholar]
  83. Bolhassani A. Lipid-based delivery systems in the development of genetic and subunit vaccines. Mol. Biotechnol. 2023 65 5 669 698 10.1007/s12033‑022‑00624‑8 36462102
    [Google Scholar]
  84. Fortina P. Kricka L.J. Surrey S. Grodzinski P. Nanobiotechnology: The promise and reality of new approaches to molecular recognition. Trends Biotechnol. 2005 23 4 168 173 10.1016/j.tibtech.2005.02.007 15780707
    [Google Scholar]
  85. Siddique S. Chow J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci. (Basel) 2020 10 11 3824 10.3390/app10113824
    [Google Scholar]
  86. Nguyen H.X. Targeted delivery of surface-modified nanoparticles: Modulation of inflammation for acute lung injury. Surface modification of nanoparticles for targeted drug delivery. Cham Springer 2019 331 353 10.1007/978‑3‑030‑06115‑9_17
    [Google Scholar]
  87. Manjunath K. Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release 2005 107 2 215 228 10.1016/j.jconrel.2005.06.006 16014318
    [Google Scholar]
  88. Priano L. El Assawy N. Gasco M. Baclofen-loaded solid lipid nanoparticles: H-reflex modulation study, behavioral characterization, and tissue distribution in the rat after intraperitoneal administration. Neurol. Sci. 2008 29 1 S443 S444
    [Google Scholar]
  89. Gupta Y. Jain A. Jain S.K. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J. Pharm. Pharmacol. 2007 59 7 935 940 10.1211/jpp.59.7.0004 17637187
    [Google Scholar]
  90. Cavalli R. Zara G.P. Caputo O. Bargoni A. Fundarò A. Gasco M.R. Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats. Part I—A pharmacokinetic study. Pharmacol. Res. 2000 42 6 541 545 10.1006/phrs.2000.0737 11058406
    [Google Scholar]
  91. Alotaibi T.A. Iyire A. Assaf S. Dahmash E.Z. Development and characterization of niosomes loaded mucoadhesive biodegradable ocular inserts for extended release of pilocarpine HCl. Future J Pharm Sci 2024 10 1 22 10.1186/s43094‑024‑00598‑1
    [Google Scholar]
  92. Garg G. Garg S. Patel P. Gupta G.D. Kurmi B.D. Advances in solid-lipid nanoparticle chemistry as drug delivery vehicles. Int. J. Polym. Mater. 2024 703 1 15 10.1080/00914037.2024.2344603
    [Google Scholar]
  93. Liang T. Gao J. Feng R. Recent progress in poly (lactic-co-glycolic acid)-based biodegradable drug delivery carriers for pain management. Processes (Basel) 2024 12 7 1372 10.3390/pr12071372
    [Google Scholar]
  94. Kumar S. Garg N.K. Jain A. Pandey P. Khopade A. Sawant K.K. Recent progress in macromolecules: From current therapeutic strategies to theranostic applications. J. Drug Deliv. Sci. Technol. 2024 96 105664 10.1016/j.jddst.2024.105664
    [Google Scholar]
  95. Gao Y. Joshi M. Zhao Z. Mitragotri S. PEGylated therapeutics in the clinic. Bioeng. Transl. Med. 2024 9 1 e10600 10.1002/btm2.10600 38193121
    [Google Scholar]
  96. Lin Y. Lin R. Lin H.B. Shen S. Nanomedicine-based drug delivery strategies for the treatment of atherosclerosis. Med Drug Discov 2024 22 100189 10.1016/j.medidd.2024.100189
    [Google Scholar]
  97. Zhao K. Zeng Z. He Y. Recent advances in targeted therapy for inflammatory vascular diseases. J. Control. Release 2024 372 730 750 10.1016/j.jconrel.2024.06.063 38945301
    [Google Scholar]
  98. Saka R. Jain H. Kommineni N. Chella N. Khan W. Enhanced penetration and improved therapeutic efficacy of bexarotene via topical liposomal gel in imiquimod induced psoriatic plaque model in BALB/c mice. J. Drug Deliv. Sci. Technol. 2020 58 101691 10.1016/j.jddst.2020.101691
    [Google Scholar]
  99. Sharma A. Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater. Sci. 2024 12 21 5415 5432 10.1039/D4BM00815D 39291418
    [Google Scholar]
  100. Raghani N.R. Chorawala M.R. Mahadik M. Patel R.B. Prajapati B.G. Parekh P.S. Revolutionizing cancer treatment: Comprehensive insights into immunotherapeutic strategies. Med. Oncol. 2024 41 2 51 10.1007/s12032‑023‑02280‑7 38195781
    [Google Scholar]
  101. Chan J.M. Rhee J.W. Drum C.L. In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles. Proc. Natl. Acad. Sci. USA 2011 108 48 19347 19352 10.1073/pnas.1115945108 22087004
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615351522250307173107
Loading
/content/journals/cnm/10.2174/0124054615351522250307173107
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: diabetes ; cancer ; gene delivery ; dermal applications ; Nanoparticulate ; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test