Skip to content
2000
Volume 10, Issue 3
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Background

The synthesis of metal nanoparticles using highly tunable ionic liquids is being investigated for many pharmacological applications and their usage in catalysis.

Aim

Ionic liquids belong to the class of green solvents and are distinguished by their simple yet distinctive physical properties that are related to their structure. These properties include their remarkable thermal stability, exceptional thermal conductivity, and negligible vapor pressure. Additionally, they are suitable and inert for a wide range of catalytic applications. Zinc Oxide Nanoparticles (ZnO-NPs) have been considered a cost-effective choice that requires modest reaction conditions to provide a high yield of the required products with remarkable selectivity in a short amount of time. Consequently, an investigation into the synthesis of ZnO-NPs in an ionic liquid medium has been attempted in the current work.

Objectives

In this context, the current work has used the co-precipitation approach to synthesize ZnO-NPs. The production of ZnO nanoparticles with a range of morphologies utilizing an imidazolium ionic liquid system has been the main topic of discussion.

Methods

The co-precipitation method has successfully been administered for the synthesis of morphologically diverse nano-crystalline ZnO particles using different ionic liquids, such as 1-propyl-3-methylimidazolium bromide (pmim)(Br), 1-butyl-3-methylimidazolium bromide ([bmim][Br]), and 1-hexyl-3-methylimidazolium bromide (hmim)(Br) as an additive.

Results

Modern analytical tools, including X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and FT-IR absorption spectroscopy have been employed to confirm the structure of these ZnO nanoparticles. The IR absorption peak below 480 cm-1 and the XRD pattern showed all the peaks in the diffraction diagram, revealing the formation of ZnO-NPs. FE-SEM images showed various morphologies of ZnO-NPs and they have been found to be separated from the agglomerated clusters.

Conclusion

The characteristic results have revealed ionic liquids to have substantial effects on the size of the zinc nano-species as well as provide the appropriate environment for the growth of the nanoparticles.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615297377240524043453
2024-06-03
2025-11-10
Loading full text...

Full text loading...

References

  1. HammondO.S. MudringA.V. Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials.Chem. Commun.202258243865389210.1039/D1CC06543B35080210
    [Google Scholar]
  2. NodaA. SusanM.A.B.H. KudoK. MitsushimaS. HayamizuK. WatanabeM. Brønsted acid−base ionic liquids as proton-conducting nonaqueous electrolytes.J. Phys. Chem. B2003107174024403310.1021/jp022347p
    [Google Scholar]
  3. HejazifarM. LanaridiO. Bica-SchroderK. Ionic liquid based microemulsions: A review.J. Mol. Liq.201911226410.1016/j.molliq.2019.112264
    [Google Scholar]
  4. ZhouY. SchattkaJ.H. AntoniettiM. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique.Nano Lett.20044347748110.1021/nl025861f
    [Google Scholar]
  5. HeZ. AlexandridisP. Nanoparticles in ionic liquids: Interactions and organization.Phys. Chem. Chem. Phys.20151728182381826110.1039/C5CP01620G26120610
    [Google Scholar]
  6. LianJ. DuanX. MaJ. PengP. KimT. ZhengW. Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties.ACS Nano20093113749376110.1021/nn900941e19877695
    [Google Scholar]
  7. Olivier-BourbigouH. MagnaL. MorvanD. Ionic liquids and catalysis: Recent progress from knowledge to applications.Appl. Catal. A Gen.20103731-215610.1016/j.apcata.2009.10.008
    [Google Scholar]
  8. LianJ. KimT. LiuX. MaJ. ZhengW. Ionothermal synthesis of turbostratic boron nitride nanoflakes at low temperature.J. Phys. Chem. C2009113219135914010.1021/jp9004136
    [Google Scholar]
  9. SeitkalievaM.M. SamoylenkoD.E. LotsmanK.A. RodyginK.S. AnanikovV.P. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications.Coord. Chem. Rev.202144521398210.1016/j.ccr.2021.213982
    [Google Scholar]
  10. BhirudS. SarodeC. GuptaG. ChaudhariG. An exceptional valorization of cuo nanoparticles in ionic liquids as an efficient medium for the electrophilic substitution of indole towards the formation of bis(indolyl)methanes.Curr. Nanomater.20249214815710.2174/2405461508666230508124607
    [Google Scholar]
  11. SabbaghanM. Mirzaei BehbahaniB. Synthesis and optical properties of CuO nanostructures in imidazolium-based ionic liquids.Mater. Lett.2014117283010.1016/j.matlet.2013.11.090
    [Google Scholar]
  12. BhirudS.R. GuptaG.R. ChaudhariG.R. Advances and perspectives of Fe metal nanoparticles synthesized in Ionic Liquid and their applications.Heterocycl. Lett.2022121
    [Google Scholar]
  13. HuJ. HuX. ChenA. ZhaoS. Directly aqueous synthesis of well-dispersed superparamagnetic Fe3O4 nanoparticles using ionic liquid-assisted co-precipitation method.J. Alloys Compd.20146031610.1016/j.jallcom.2014.02.022
    [Google Scholar]
  14. BhirudS.R. SarodeC.H. GuptaG.R. ChaudhariR.P. ChaudhariG.R. Elegant explorations of ionic liquids in the expeditious synthesis of Fe3O4 nanoparticles.Orient. J. Chem.202339510.13005/ojc/390533
    [Google Scholar]
  15. ManjunathK. Reddy YadavL.S. JayalakshmiT. ReddyV. RajanaikaH. NagarajuG. Ionic liquid assisted hydrothermal synthesis of TiO2 nanoparticles: Photocatalytic and antibacterial activity.J. Mater. Res. Technol.201871713, 7-1310.1016/j.jmrt.2017.02.001
    [Google Scholar]
  16. SoundaryaT.L. JayalakshmiT. AlsaiariM.A. JalalahM. AbateA. AlharthiF.A. AhmadN. NagarajuG. Ionic liquid-aided synthesis of anatase TiO2 nanoparticles: Photocatalytic water splitting and electrochemical applications.Crystals2022128113310.3390/cryst12081133
    [Google Scholar]
  17. NishanU. HaqS.U. RahimA. AsadM. BadshahA. Ali ShahA.H. IqbalA. MuhammadN. Ionic-liquid-stabilized TiO 2 nanostructures: A platform for detection of hydrogen peroxide.ACS Omega2021648327543276210.1021/acsomega.1c0454834901624
    [Google Scholar]
  18. MeloB. R. ScholtenJ. D. MigowskiP. MarinG. ZapataM. J. M. MachadoG. TeixeiraS. R. NovakM. A. DupontJ. Controlled synthesis of Mn3O4 nanoparticles in ionic liquids.Dalton Trans20134240144731447910.1039/c3dt32348j
    [Google Scholar]
  19. Al KieyS.A. SeryA.A. FaragH.K. Sol-gel synthesis of nanostructured cobalt oxide in four different ionic liquids.J. Sol-Gel Sci. Technol.20231061374310.1007/s10971‑023‑06040‑x
    [Google Scholar]
  20. XiaoM. SunH. ZhuF. MengY. Regulation of Co3O4 morphology via ionic liquid for efficient bifunctional electrocatalysts.J. Alloy. Comp.202497017271810.1016/j.jallcom.2023.172718
    [Google Scholar]
  21. PillaiA.M. SivasankarapillaiV.S. RahdarA. JosephJ. SadeghfarF. Anuf AR. RajeshK. KyzasG.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity.J. Mol. Struct.2020121112810710.1016/j.molstruc.2020.128107
    [Google Scholar]
  22. DhandapaniK.V. AnbumaniD. GandhiA.D. AnnamalaiP. MuthuvenkatachalamB.S. KavithaP. RanganathanB. Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities.Biocatal. Agric. Biotechnol.20202410151710.1016/j.bcab.2020.101517
    [Google Scholar]
  23. CostaB.C. RodriguesE.A. TokuharaC.K. OliveiraR.C. Lisboa-FilhoP.N. RochaL.A. ZnO nanoparticles with different sizes and morphologies for medical implant coatings: Synthesis and cytotoxicity.Bionanoscience20188258759510.1007/s12668‑018‑0514‑7
    [Google Scholar]
  24. AnjumS. HashimM. MalikS.A. KhanM. LorenzoJ.M. AbbasiB.H. HanoC. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment.Cancers20211318457010.3390/cancers1318457034572797
    [Google Scholar]
  25. DjearamaneS. XiuL.J. WongL.S. RajamaniR. BharathiD. KayarohanamS. De CruzA.E. TeyL.H. JanakiramanA.K. AminuzzamanM. SelvarajS. Antifungal properties of zinc oxide nanoparticles on Candida albicans.Coatings20221212186410.3390/coatings12121864
    [Google Scholar]
  26. AnjaliK.P. SangeethaB.M. RaghunathanR. DeviG. DuttaS. Seaweed mediated fabrication of zinc oxide nanoparticles and their antibacterial, antifungal and anticancer applications.ChemistrySelect20216464765610.1002/slct.202003517
    [Google Scholar]
  27. DuttaR.K. NenavathuB.P. GangishettyM.K. ReddyA.V.R. Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201348887187810.1080/10934529.2013.76148923485236
    [Google Scholar]
  28. MahendraC. MuraliM. ManasaG. PonnammaP. AbhilashM.R. LakshmeeshaT.R. SatishA. AmrutheshK.N. SudarshanaM.S. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.).Microb. Pathog.201711062062910.1016/j.micpath.2017.07.05128778822
    [Google Scholar]
  29. MitraS. BS. PatraP. ChandraS. DebnathN. DasS. BanerjeeR. KunduS.C. PramanikP. GoswamiA. Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications.J. Mater. Chem.201222452414510.1039/c2jm35013k
    [Google Scholar]
  30. ValizadehH. AzimiA.A. ZnO/MgO containing ZnO nanoparticles as a highly effective heterogeneous base catalyst for the synthesis of 4H-pyrans and coumarins in [bmim]BF4.J. Indian Chem. Soc.20118112313010.1007/BF03246209
    [Google Scholar]
  31. PandeyG. SharmaP. GeedkarD. KumarA. One-pot strategy to synthesize seven–membered 1,4-diazepine heterocyclic scaffolds assisted by zinc oxide nanoparticles as heterogeneous catalytic support system.Curr. Chem. Lett.2023121799010.5267/j.ccl.2022.9.004
    [Google Scholar]
  32. ShabaE.Y. JacobJ.O. TijaniJ.O. SuleimanM.A.T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment.Appl. Water Sci.20211124810.1007/s13201‑021‑01370‑z
    [Google Scholar]
  33. ManzoorU. Tuz ZahraF. RafiqueS. MoinM.T. MujahidM. Effect of synthesis temperature, nucleation time, and postsynthesis heat treatment of ZnO nanoparticles and its sensing properties.J. Nanomater.201520151610.1155/2015/189058
    [Google Scholar]
  34. AgrawalN. ZhangB. SahaC. KumarC. PuX. KumarS. Ultra-sensitive cholesterol sensor using gold and zinc-oxide nanoparticles immobilized core mismatch MPM/SPS probe.J. Lightwave Technol.20203882523252910.1109/JLT.2020.2974818
    [Google Scholar]
  35. WibowoA. MarsudiM.A. AmalM.I. AnandaM.B. StephanieR. ArdyH. DigunaL.J. ZnO nanostructured materials for emerging solar cell applications.RSC Advances20201070428384285910.1039/D0RA07689A35514924
    [Google Scholar]
  36. ChaudharyS. KaurY. UmarA. ChaudharyG.R. Ionic liquid and surfactant functionalized ZnO nanoadsorbent for recyclable proficient adsorption of toxic dyes from waste water.J. Mol. Liq.20162241294130410.1016/j.molliq.2016.10.116
    [Google Scholar]
  37. MotelicaL. OpreaO.C. VasileB.S. FicaiA. FicaiD. AndronescuE. HolbanA.M. Antibacterial activity of solvothermal obtained zno nanoparticles with different morphology and photocatalytic activity against a dye mixture: Methylene blue, rhodamine b and methyl orange.Int. J. Mol. Sci.2023246567710.3390/ijms2406567736982751
    [Google Scholar]
  38. Al-BedairyM.A. AlshamsiH.A.H. Environmentally friendly preparation of zinc oxide, study catalytic performance of photodegradation by sunlight for rhodamine B dye.Eurasian.J. Anal. Chem.20181319
    [Google Scholar]
  39. MagdalenaP. MarianZ. Effect of ionic liquids and surfactants on zinc oxide nanoparticle activity in crosslinking of acrylonitrile butadiene elastomer.J. Appl. Polym. Sci.20101161155164
    [Google Scholar]
  40. RasliN.I. BasriH. HarunZ. Zinc oxide from aloe vera extract: Two-level factorial screening of biosynthesis parameters.Heliyon202061e0315610.1016/j.heliyon.2020.e0315632042952
    [Google Scholar]
  41. UmarA. KimS. KumarR. Al-AssiriM. Al-SalamiA. IbrahimA. BaskoutasS. In-doped ZnO hexagonal stepped nanorods and nanodisks as potential scaffold for highly-sensitive phenyl hydrazine chemical sensors.Materials20171011133710.3390/ma1011133729160823
    [Google Scholar]
  42. PachauriV. SubramaniamC. PradeepT. Novel ZnO nanostructures over gold and silver nanoparticle assemblies.Chem. Phys. Lett.20064231-324024610.1016/j.cplett.2006.03.071
    [Google Scholar]
  43. ÇolakH. KaraköseE. Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia (lemon) peel extract by spin-coating method.J. Alloys Compd.201769065866210.1016/j.jallcom.2016.08.090
    [Google Scholar]
  44. SharmaS. KumarK. ThakurN. ChauhanS. ChauhanM.S. The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: A green approach.Bull. Mater. Sci.20204312010.1007/s12034‑019‑1986‑y
    [Google Scholar]
  45. GuptaG.R. ChaudhariG.R. TomarP.A. WaghuldeG.P. PatilK.J. Molten ammonium salt as a solvent for Menschutkin quaternization reaction (synthesis of ionic liquids) and other heterocyclic compounds.Asian J. Chem.2012241046754678
    [Google Scholar]
  46. PrechtlM.H.G. Nanocatalysis in Ionic Liquids. Wiley-VCH Verlag GmbH & Co. KGaA.GermanyBoschstr2017
    [Google Scholar]
  47. RabiehS. BagheriM. HeydariM. BadieiE. Microwave assisted synthesis of ZnO nanoparticles in ionic liquid [Bmim]cl and their photocatalytic investigation.Mater. Sci. Semicond. Process.20142624425010.1016/j.mssp.2014.05.013
    [Google Scholar]
  48. ZwaraJ. Paszkiewicz-GawronM. ŁuczakJ. PancielejkoA. LisowskiW. TrykowskiG. Zaleska-MedynskaA. GrabowskaE. The effect of imidazolium ionic liquid on the morphology of Pt nanoparticles deposited on the surface of SrTiO3 and photoactivity of Pt–SrTiO3 composite in the H2 generation reaction.Int. J. Hydrogen Energy20194448263082632110.1016/j.ijhydene.2019.08.094
    [Google Scholar]
  49. KimI. ViswanathanK. KasiG. SadeghiK. ThanakkasaraneeS. SeoJ. Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens.Microb. Pathog.202014910429010.1016/j.micpath.2020.10429032492458
    [Google Scholar]
  50. ManikandanB. EndoT. KanekoS. MuraliK.R. JohnR. Properties of sol gel synthesized ZnO nanoparticles.J. Mater. Sci. Mater. Electron.201829119474948510.1007/s10854‑018‑8981‑8
    [Google Scholar]
  51. HandoreK. BhavsarS. HorneA. ChhattiseP. MohiteK. AmbekarJ. PandeN. ChabukswarV. Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes.J. Macromol. Sci. Part A Pure Appl. Chem.2014511294194710.1080/10601325.2014.967078
    [Google Scholar]
  52. RameshP. SaravananK. ManogarP. JohnsonJ. VinothE. MayakannanM. Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential.Sens. Biosensing Res.20213110039910.1016/j.sbsr.2021.100399
    [Google Scholar]
  53. JanakiA.C. SailathaE. GunasekaranS. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.2015144172210.1016/j.saa.2015.02.04125748589
    [Google Scholar]
  54. ViswanathanK. KimI. KasiG. SadeghiK. ThanakkasaraneeS. SeoJ. Facile approach to enhance the antibacterial activity of ZnO nanoparticles.Adv. Appl. Ceram.2020119741442210.1080/17436753.2020.1777507
    [Google Scholar]
  55. IsmaiilM.A. TahaK.K. ModwiA. KhezamiL. ZnO-nanoparticles: surface and x-ray profile analysis.J. Ovonic Res.2018145381393
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615297377240524043453
Loading
/content/journals/cnm/10.2174/0124054615297377240524043453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test