Skip to content
2000
Volume 14, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background: Propagation of pathogens has considered an important health care problem due to their resistance against conventional antibiotics. The recent challenge involves the design of functional alternatives such as nanomaterials, used as antibacterial agents. Early stages of antibacterial damage caused by metallic nanoparticles (NPs) were studied by Transmission Electron Microscopy (TEM) and combined Scanning Transmission Electron Microscopy with High Angle Annular Dark Field (STEM-HAADF), aiming to contribute to the elucidation of the primary antibacterial mechanism of metallic NPs. Methods: We analyze the NPs morphology by TEM and their antibacterial activity (AA) with different amounts of Ag and Cu NPs. Cultured P. aeruginosa were interacted with both NPs and processed by TEM imaging to determine NPs adhesion into bacteria wall. Samples were analyzed by combined STEM-HAADF to determine the NPs penetration into bacterium and elemental mapping were done. Results: Both NPs displays AA depending on NPs concentration. TEM images show NPs adhesion on bacterial cells, which produces morphological changes in the structure of the bacteria. STEMHAADF also proves the NPs adhesion and penetration by intracellular localization, detecting Ag/Cu species analyzed by elemental mapping. Moreover, the relative amount of phosphorus (P) and sulfur (S) increases slightly in P. aeruginosa with the presence of NPs. These elements are associated with damaged proteins of the outer cell membrane. Conclusions: Combined microscopy analyses suggest that the early stages of antibacterial damage caused by alteration of bacterial cell wall, and can be considered a powerful tool aiming to understand the primary antibacterial mechanism of NPs.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/2468187307666170906150731
2018-02-01
2025-12-13
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/2468187307666170906150731
Loading

  • Article Type:
    Research Article
Keyword(s): Antibacterial damage; copper; HRTEM; metallic nanoparticles; silver; STEM-HAADF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test