Skip to content
2000
Volume 16, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background: The architecture and sequential learning rule-based underlying ARFIS (adaptive-receiver-based fuzzy inference system) are proposed to estimate and predict the adaptive threshold-based detection scheme for diffusion-based molecular communication (DMC). Methods: The proposed system forwards an estimate of the received bits based on the current molecular cumulative concentration, which is derived using sequential training-based principle with weight and bias and an input-output mapping based on both human knowledge in the form of fuzzy IFTHEN rules. The ARFIS architecture is employed to model nonlinear molecular communication to predict the received bits over time series. Results: This procedure is suitable for binary On-OFF-Keying (Book signaling), where the receiver bio-nanomachine (Rx Bio-NM) adapts the 1/0-bit detection threshold based on all previous received molecular cumulative concentrations to alleviate the inter-symbol interference (ISI) problem and reception noise. Conclusion: Theoretical and simulation results show the improvement in diffusion-based molecular throughput and the optimal number of molecules in transmission. Furthermore, the performance evaluation in various noisy channel sources shows promising improvement in the un-coded bit error rate (BER) compared with other threshold-based detection schemes in the literature.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/1573413715666190625114949
2020-04-01
2025-10-30
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/1573413715666190625114949
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test