Skip to content
2000
Volume 16, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Due to its various advantages, colloidal quantum dots (CQDs) carry a prodigious deal of interest in low-cost photovoltaics. The possibility of tailored band gaps via quantum confinement effect facilitates photovoltaic devices to be tuned to allow their optical absorption bandwidths to match with the solar spectrum. Size, shape, and material composition are some of the significant factors which affect the optical and electronic properties of QDs. Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) are some of the most resourceful methods available for the microstructural characteristics of solid materials. These techniques can provide useful information about the structural, morphological and compositional properties of the specimen. In this focused review, we analyze the several types of QDs, their synthesis and characterization, exclusively morphological studies carried out on quantum dots for solar cell applications. Despite various advantages and techniques used for morphological characterization of QDs, very few reviews are reported in the past years. In this review, we have compiled the important and latest findings published on morphological analysis of QDs for photovoltaic applications which can provide the guideline for the research for the future work in the field.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/1573413715666190206150619
2020-08-01
2025-09-08
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/1573413715666190206150619
Loading

  • Article Type:
    Review Article
Keyword(s): AFM; photovoltaics; Quantum Dots (QDs); SEM; solar cell; TEM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test