Skip to content
2000
Volume 16, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background: Removal of sulfur-containing compounds from the aqueous environment is necessary as these compounds pose potential risks to human health, hygienic management and bring great economic losses due to fouling of resin bed and corrosion of process equipment. Objective: This work aims to study the H2S removal efficiency using high surface area mesoporous silica (MCM–41). Methods: In this study, mesoporous silica (MCM–41) with a high surface area of 1270 m2/g and high porosity of 69% was prepared by sol-gel technique. Results: The obtained MCM–41 has exhibited a superior performance in adsorbing H2S from wastewater with a maximum adsorption capacity of 52.14 mg/g. The adsorption isotherm and kinetics of the current adsorption process are best represented by Freundlich isotherm and pseudo-secondorder models, respectively. Conclusion: Therefore, MCM–41 is an excellent adsorbent for wastewater treatment applications.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/1573413715666181205122307
2020-04-01
2025-09-08
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/1573413715666181205122307
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test