Skip to content
2000
Volume 11, Issue 2
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

We developed cyclic voltammetry (CV)-based screen-printed carbon nanotubes (SP-CNTs) electrode system for the measurement antidiabetic potential of medicinal plants. The antidiabetic potential was measured by the ability of medicinal plant extracts to inhibit α-glucosidase (AG) enzyme that hydrolyses Pnitrophenol- α-D-glucopyranoside (PNPG) to release para-nitrophenol (p-NP). The SP-CNTs electrode system directly measured the released p-NP without any separation and purification steps. The bioactive phenolic compounds of the medicinal plant extracts are implicated to inhibit the enzymatic reaction. The antidiabetic potential of three different medicinal plants, namely, Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), Kedondong (Sponbias dulcis) and one commercial antidiabetic drug (Acarbose) were measured using the electrode system and excellent sensitivity was obtained (limit of detection 0.5 mg/mL). The results were verified using conventional UV-Vis spectroscopic system and excellent correlation was found (R2 = 0.982, 0.986, 0.976, 0.987 for Tebengau, Cemumar, Kedondong and Acarbose respectively), suggesting the reliability of the system among the three plants. Tebengau plant extracts exhibited the highest inhibition, indicating its potential application as a natural antidiabetic drug. The method is suitable for field level screening of antidiabetic potentials of herbs.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/1573413711666141209234531
2015-04-01
2025-09-06
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/1573413711666141209234531
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test