Skip to content
2000
Volume 10, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Nanometal oxides are used extensively in various industries such as cosmetics, medicine, and food. Because of the increased use of nanoparticles, it is necessary to understand their influence on the environment. In this investigation, we have focused on the ecotoxicological behavior of nano and bulk silica (SiO2) and alumina (Al2O3) particles on plant growth–promoting rhizobacteria (PGPR). Nano Al2O3 had shown 15 ± 0.91 mm (Pseudomonas fluorescens), 14 ± 0.53 mm (Bacillus megaterium), 13 ± 0.26 mm (Bacillus brevis), and 16 ± 0.65 mm (Azotobacter vinelandii) zones of inhibition. The influence of nano and bulk particles on soil and its nutrients (total organic carbon, total nitrogen, phosphorus, and available potassium) was also analyzed using standard soil analytical techniques. Our findings showed that nano and bulk SiO2 particles were nontoxic toward PGPR up to 1000 mg L-1 concentration. In addition, bulk Al2O3 particles were less toxic toward PGPR, whereas nano Al2O3 particles were highly toxic at 1000 mg L-1 concentration. Moreover, nano Al2O3 particles led to a decrease in microbial population of the soil, leading to decrease in available forms of nutrients. In addition, this investigation concluded that zeta potential and contact angle have major role in toxicity. Thus, precautions should be taken during disposal and use of such toxic nanomaterials in the soil to prevent their hazardous effects.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/15734137113096660126
2014-05-01
2025-10-21
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/15734137113096660126
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test