Skip to content
2000
Volume 9, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The present study aims to investigate the drug-loaded mechanism of ion–cross-linked nanoparticles (NPs) in the presence of polyvinylpyrrolidone K30 (PVP K30) and set up the optimal PVP-coated norcantharidin (NCTD) chitosan NPs method. We compared and assessed PVP-coated norcantharidin chitosan NP (PVP-NCTD-NP) with norcantharidin chitosan nanoparticles (NCTD-CS-NP) using Xray diffraction (XRD) and atomic force microscopy (AFM). The results show that both kinds of nanoparticles were spherical, with an average size ranging from 100 nm to 250 nm. However, the entrapment efficiency of the PVP-NCTD-NP (67.33% ± 1.41%) was higher than that of NCTD-CS-NP (52.61% ± 1.28%), probably because of the PVP-coating effect on the surface of the NPs. The cumulative release percentages of PVP-NCTD-NP in vitro within 2 h, 4 h, and 6 h were 74%, 89%, and 92%, respectively. Those of NCTD-CS-NP within 40 min and 190 min were 67% and 90%, respectively. Thus, the PVP-NCTD-NP with dual physical drug-loaded mechanisms (physical encapsulation and coating of PVP) possessed higher drug content and showed longer sustained release.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/1573413711309030018
2013-06-01
2025-09-14
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/1573413711309030018
Loading

  • Article Type:
    Research Article
Keyword(s): AFM; coating; nanoparticle; NCTD; PVP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test