Skip to content
2000
Volume 8, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The temperature-dependent property of band gap in colloidal PbSe quantum dots has been investigated from both experiment and theory above room temperature. When the particle size increases, the temperature coefficient evolves from negative values to zero and then to positive value following the trend to its bulk material value. The calculated critical size of 4.88 nm for the temperature coefficient dE / dT = 0 is consistent with the experimental result. When the particle size is smaller than the critical size, the temperature coefficient dE / dT is also dependent on the temperature, which has not been observed before. However, this phenomenon is not obvious at large particle sizes. The functions of size- and temperature-depended band gap E and temperature coefficient dE / dT are achieved through theoretical calculation and experimental calibration. Temperature-induced variations of quantum confinement energy and exciton- phonon coupling are the key factors for the temperature coefficient. The balance between the variations of confined effect and exciton- phonon coupling causes the critical size of temperature coefficient in colloidal PbSe quantum dots.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341312803989060
2012-12-01
2025-10-26
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341312803989060
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test