Skip to content
2000
Volume 8, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Microemulsions are nanosized thermodynamically stable transparent, single optically isotropic liquid systems of water, oil and surfactants. The thermodynamic stability, ease of production, high solubilization capacity and small droplet size made them ideal for transdermal drug delivery. Microemulsions can be prepared using various oils, surfactants and cosurfactants. This diversity in composition will affect the type of microemulsion and influence the transdermal drug delivery potential. The use of microemulsions in skin drug delivery has been reviewed previously but a lack of consecutive studies hampered drawing general conclusions on the effect of components and properties on the drug delivery rate. In addition, alternative mechanisms were reported for transdermal delivery from microemulsion. The first is related to the high drug loading capacity. The second is the penetration enhancing effect of the microemulsion components. The third depends on possible entrance of microemulsion components into the skin as monomers, increasing the solubility of the drug in the skin. The fourth depends on the microstructure of the system which provides large surface area of drug transfer. The last mechanism relies on the phase transition of microemulsions which provides a possibility for producing supersaturated system with high thermodynamic activity. Safety is another important factor which can influence the formulation development. This manuscript will critically evaluate skin drug delivery potential of microemulsions. The assessment will also highlight possible mechanisms of action before finally reporting on the safety and the feasibility of microemulsions for scaling up.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341312801784258
2012-09-01
2025-09-28
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341312801784258
Loading

  • Article Type:
    Research Article
Keyword(s): follicular delivery; Microemulsion; phase transition; supersaturation; transdermal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test