Skip to content
2000
Volume 8, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

This interdisciplinary view of microfluidics at the interface with life sciences starts with presentation of the advantages and challenges presented by microfluidic devices. The forces important for flow in microchannels are discussed and special emphasis is placed on electrokinetic effects. The laws and principles governing flow in microchannels are compared to those important in macroflow and experimental methods used to measure flow in microchannels are introduced. Because flow in microchannels is laminar, for many applications there is need to enhance mixing and different ways to achieve this are presented herein. Due to the important influence of surface interactions for microfluidics, the materials used to manufacture microchannels are very important in flow control. A separate section discusses glass, silicon-based materials, and newer soft polymers used in microfluidic devices and the connection between their structure and the properties they impart to the flow. The field in which there are already numerous commercially available microfluidic devices is biotechnology. Some applications are discussed in a separate section. Lab-on-a-chip devices, due to their importance, are presented in a separate unit. Future directions of research in this interdisciplinary field are briefly discussed.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341312800620151
2012-06-01
2025-09-09
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341312800620151
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test