Skip to content
2000
Volume 8, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The WO3 nanorods and WO3·0.33H2O nanowires are fabricated by a hydrothermal method in the presence of NaCl and K2SO4, respectively. The products are characterized in detail by multiform techniques: X-ray diffraction (XRD), energy-dispersive X-ray analysis( EDS), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The WO3 nanorods have diameters ranging from 40-60 nm, and lengths ranging between 500-800 nm. The WO3·0.33H2O nanowires obtained have diameter of 10-15 nm, and lengths of about several microns. The effects of the preparation conditions such as the concentration and species of inorganic salts on the crystalline phase and morphology of the products have been studied systematically. The prepared WO3 nanorods and WO3·0.33H2O nanowires are used as electrode materials to study the electrochemical properties in 1 M LiClO4 solution. The WO3·0.33H2O nanowires showed higher current for lithium intercalation than the WO3 nanorods.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341312799362304
2012-02-01
2025-09-22
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341312799362304
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test