Skip to content
2000
Volume 7, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

To date, the activation induced reorganization in membrane nanostructures and alteration in membrane adhesion property of CD4 + T lymphocytes largely remain unclear yet even though their immunological functions have been well elucidated. The present work focused on detecting the differences in topography, membrane nanostructures and adhesion/friction behaviors of CD4 + T cells in the absence and presence of stimulus (Phorbol dibutyrate, PDB, plus Ionomycin, ION). The results showed that, due to cell activation in vitro, (a) the formation of pseudopodia, lamellipodia; (b) the appearance of membrane pores with 200∼450 nm in diameter and 70∼110 nm in depth; (c) the formation of nanostructural domains with different adhesion behavior; (d) the loading rate and loading force could affect the measured adhesion force nonlinearly; (e) the dynamic changes in membrane adhesion force, from 348±9.08 pN for resting cells, 827.07±24.61 pN for 24 hours of activation, 372.87±9.26 pN for 48 hours of activation, to 302.45±11.42 pN for 72 hours of activation. This work achieved the biophysical changes of CD4 + T cells with and without stimulation, which would enable us to seek new implications and potential links between cytoarchitectures, membrane adhesion and immunological functions at the single-cell and nanoscale level.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341311795542363
2011-06-01
2025-10-05
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341311795542363
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test